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We derive the complete form of the van der Waals dispersion interaction between two infinitely long
anisotropic semiconducting/insulating thin cylinders at all separations. The derivation is based on the general
theory of dispersion interactions between anisotropic media as formulated in Munday et al. �Phys. Rev. A 71,
042102 �2005��. This formulation is then used to calculate the dispersion interactions between a pair of
single-walled carbon nanotubes at all separations and all angles. Nonretarded and retarded forms of the
interactions are developed separately. The possibility of repulsive dispersion interactions and nonmonotonic
dispersion interactions is discussed within the framework of the formulation.
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I. INTRODUCTION

Single-walled carbon nanotubes �SWCNTs� constitute a
unique class of materials with chirality-dependent dielectric
properties1 that give rise to interesting consequences in terms
of their van der Waals dispersion interactions. Several ex-
perimental procedures have exploited the differences among
these properties in order to separate SWCNTs by chirality
�see Ref. 2 and references therein�. In order to separate a
polydisperse solution of SWCNTs into monodisperse frac-
tions of one chirality reliably, one needs to understand the
detailed features of the interactions between constituent
SWCNTs. Apart from this, the dispersion interactions could
also drive micromechanical and nanomechanical actuators
that could transduce rectilinear motion or even convert rec-
tilinear into rotational motion.3 To achieve this goal a much
more rigorous understanding of fundamental forces and, in
particular, van der Waals—dispersion interactions between
SWCNTs is needed. Several important advances have been
made in this direction4 some of them also by the authors of
the present work.5 Here we continue these efforts.

We derive the complete van der Waals dispersion-
interaction free energy between two anisotropic cylinders at
all separations, including the retardation effects. We start
with the Lifshitz theory of van der Waals interactions be-
tween two semi-infinite anisotropic uniaxial dielectric layers
across a finite layer of dielectric function �m and thickness �
as worked out by Barash6—the result of this calculation is
the interaction free energy between the two layers as a func-
tion of their separation � and the angle between their princi-
pal dielectric anisotropy axes �: G�� ,��. The dielectric re-
sponse of the two dielectrically uniaxial half spaces is given
by the values of their dielectric functions ��, parallel and ��,

perpendicular to their respective axes. We shall use �1,� ��1,��
and �2,� ��2,�� for the left and right half spaces, respectively.
Note also that in the theory of van der Waals interactions7,8

all the dielectric-response functions are evaluated at imagi-
nary frequencies, thus ��,�=��,��i��. ��,��i�� is referred to
as the London—van der Waals transform of the response
function ��,���� and is given by the Kramers-Kronig rela-
tions. It is strictly a real, monotonically decaying function of
�.

From the interaction free energy between two half spaces
one can extract the interaction between two cylinders �see
Fig. 1� by assuming that the two half spaces are dilute as-
semblies of anisotropic cylinders. One should keep in mind,
however, that the cylinder dielectric response is isotropic in
the plane perpendicular to the cylinder axis—we call this the
transverse dielectric response. The difference between the
transverse response and the response in the direction parallel
to the cylinder axis �longitudinal response� constitutes the
dielectric anisotropy of the problem. The derivation closely
follows the arguments of Pitaevskii for evaluating the inter-
actions between isotropic impurity atoms in a homogeneous
fluid.9 We assume that the two anisotropic half spaces are
composed of anisotropic cylinders of radii R1 and R2 at vol-
ume fractions v1 and v2 with �1,�

c ��2,�
c � and �1,�

c ��2,�
c � as the

transverse and longitudinal dielectric-response functions of
the cylinder materials. We then expand G�� ,�� for two half
spaces as a series in v1 and v2 and evaluate the coefficient
multiplying the v1v2 term. The volume fractions v1 and v2
scale with the area density of the cylinders �N1 ,N2� in the
direction of their long axes as v1=N1�R1

2�v2=N2�R2
2�. It

then follows7 that the interaction free energy between two
cylinders, G�� ,��, whose axes are contained within the two
parallel boundaries at a separation � but skewed at an angle
� �see Fig. 1� is given by
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d2G��,��
d�2 = N1N2 sin �G��,�� . �1�

Conversely, the interaction free energy per unit length, g���,
between two parallel cylinders is given by the Abel trans-
form �see, e.g., Ref. 7, pp. 233–235�

d2G��,� = 0�
d�2 = N1N2�

−�

+�

g���2 + y2�dy . �2�

In both cases we expand G�� ,�� to find the coefficient next
to v1v2 �or equivalently N1N2�, take the second derivative
with respect to �, then use Eqs. �1� and �2� in order to obtain
the appropriate pair-interaction free energy between cylin-
ders. Note that such an expansion is possible only if the
dielectric response at all frequencies is bounded. In the case
of an ideal metal Drude-type dielectric response this expan-
sion is not feasible and our method cannot be transplanted to
that case automatically.

The closest attempt in the literature to evaluate the inter-
action between two cylinders at all separations comes from
Barash and Kyasov.10 Where this approach can be compared
with the one presented here, i.e., for two parallel isotropic
cylinders, the results for the interaction free energy between
parallel cylinders coincide completely. Our calculation pre-
sents the attempt to evaluate the van der Waals dispersion
interaction between two skewed anisotropic cylinders at all
angles and at all separations. Its major drawback is that by
construction it is valid only for materials with finite dielectric
response and thus cylinders with ideally metallic dielectric
functions showing a Drude-type peak at zero frequency can-
not be treated by the theory presented below. Also the calcu-
lation is only valid for infinitely long cylinders and finite
length effect are not taken into account.

II. DERIVATION

We use the Pitaevskii ansatz in order to extract the inter-
actions between two infinite anisotropic cylinders at all sepa-
rations and angles from the interaction between two semi-
infinite half spaces of anisotropic uniaxial dielectric material.
We start with the fully retarded van der Waals dispersion
interactions between two semi-infinite anisotropic dielectric
slabs.6 The full interaction form is quite involved but it has a
simple limit if the two semi-infinite slabs, L and R, sepa-
rated by an isotropic medium of thickness �, are composed
of rarefied material.

In order to get the interaction free energy between two
anisotropic cylinders we assume that both semi-infinite sub-
strates �half spaces�, L �1� and R �2�, are composite materi-
als made of oriented anisotropic cylinders at volume frac-
tions v1 and v2 with �1,�

c ��2,�
c � and �1,�

c ��2,�
c � as the

transverse and longitudinal dielectric-response functions of
the cylinder materials. For the semi-infinite composite me-
dium of oriented anisotropic cylinders with local hexagonal
packing symmetry so that the corresponding cylinder volume
fraction is v, the anisotropic bulk dielectric-response func-
tion can be derived in the form �see, Ref. 7, p. 318�

�� = �m�1 + v���, �� = �m�1 +
2v��

1 − v��

	 , �3�

where the relative anisotropy measures in the parallel and
perpendicular direction are given by

�� =
��

c − �m

��
c + �m

�� =
��

c − �m

�m
. �4�

In our case, this holds for both L and R half spaces with the
appropriate volume fractions and dielectric responses. �m is
the dielectric function of the isotropic medium between the
cylinders as well as between regions L and R. We assume in
what follows that all the response functions are bounded and
finite.

The formulas in Eqs. �1� and �2� connect the interaction
free energy of two semi-infinite half spaces with the interac-
tion free energy between two cylinders either parallel or
skewed at a finite angle �. The Barash result6 for the com-
plete retarded form of the interactions between two uniaxial
media, G�� ,��, is quite complicated �note also a typo that
propagated starting from the original version of the
calculation11 and was first noted in Ref. 12� but can be
straightforwardly expanded to second order in N �a term pro-
portional to v1v2� for the dielectric-response functions of the
form Eq. �3�, yielding the following result:

d2G��,��
d�2 =

kBT

2�


n=0

�

��
0

�

QdQ
d2f��,��

d�2 . �5�

In the above equation, n represent the �thermal� Matsubara
indices, the prime on the summation means that the weight
of the n=0 term is 1/2 �see Refs. 7 and 10 for details�. The
second derivative of the function f�� ,�� can be obtained ex-
plicitly in terms of the ratios between the relative anisotropy
measures �Eq. �4�� defined as

FIG. 1. A sketch of the system of interest �the two cylinders�.
The quantities describing the geometry of the system are denoted
together with the longitudinal and transverse directions of cylinder
in the left half space �1�. The skew angle � is about an axis normal
to the planar boundary defining the limits of each half space.
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a =
2��

��

= 2
���

c − �m��m

���
c + �m����

c − �m�
�6�

and is obviously frequency dependent. Parameters a1 and a2
can be thought of as a specific measure of the anisotropy of
the cylinders in the left and right half spaces when compared
with the isotropic bathing medium m. Note that they vanish
when the transverse dielectric response of the cylinder mate-
rial equals the medium response. The explicit form of the
second derivative of f�� ,�� now follows as

d2f��,��
d�2 = −

v1v2�1,��2,�

32

e−2��Q2+�m�n
2/c2

�Q2 + �m

�n
2

c2 	
��2��1 + 3a1��1 + 3a2�Q4 + 2�1 + 2a1 + 2a2

+ 3a1a2�Q2�m

�n
2

c2 + 2�1 + a1��1 + a2��m
2 �n

4

c4 
+ �1 − a1��1 − a2��Q2 + 2�m

�n
2

c2 	2

cos 2�� . �7�

The cylinder radii are assumed to be the smallest lengths in
the problem.10 The frequency dependence of the dielectric
functions is in �m�i�n�, ��

c �i�n� and ��
c�i�n�, and therefore

also a=a�i�n�. The frequencies in the Matsubara summation
are �n=2�

kBT

	 n. Note that Eq. �7� is symmetric with respect
to 1 and 2 indices �left and right half spaces�, as it should be.

This is as far as a general theory can go. We must now
deal separately with the cases of skewed and parallel cylin-
ders since the connection between d2G��,��

d�2 and the effective
pair interaction between cylinders is different for the two
cases, see Eqs. �1� and �2�. We first analyze the case of
skewed cylinders.

A. Skewed cylinders

We use Eq. �1� to obtain the interaction free energy be-
tween two skewed cylinders

G��,�� = −
kBT

64�

�2R1
2R2

2

�4 sin �


n=0

�

��1,��2,�

��
0

�

udu
e−2�u2+pn

2

�u2 + pn
2�

g�a1,a2,u,pn,�� , �8�

where u=Q�

g�a1,a2,u,pn,�� = 2��1 + 3a1��1 + 3a2�u4

+ 2�1 + 2a1 + 2a2 + 3a1a2�u2pn
2

+ 2�1 + a1��1 + a2�pn
4�

+ �1 − a1��1 − a2��u2 + 2pn
2�2cos 2�

�9�

and pn
2=�m�i�n�

�n
2

c2 �2. Another change in variables with u
= pnt, yields

G��,�� = −
kBT

64�

�2R1
2R2

2

�4 sin �


n=0

�

��1,��2,�pn
4

��
0

�

tdt
e−2pn

�t2+1

�t2 + 1�
g̃�t,a1�i�n�,a2�i�n�,��

�10�

with

g̃�t,a1,a2,�� = 2��1 + 3a1��1 + 3a2�t4

+ 2�1 + 2a1 + 2a2 + 3a1a2�t2

+ 2�1 + a1��1 + a2��

+ �1 − a1��1 − a2��t2 + 2�2cos 2� . �11�

This is the final result for the cylinder-cylinder interaction at
all angles when the radii of the cylinders are the smallest
lengths in the system. It includes retardation and the full
angular dependence. Some simple limits can be obtained
form this general expression.

The nonretarded limit where c→�, has already been ex-
plored in Ref. 5. There pn→0 for all n and we obtain from
Eq. �8�

G��,�;c → �� = −
kBT

64�

�2R1
2R2

2

�4 sin �


n=0

�

��1,��2,��
0

�

u3due−2u

��2�1 + 3a1��1 + 3a2� + �1 − a1��1 − a2�cos 2��

= −
kBT

64�

�2R1
2R2

2

�4 sin �


n=0

�

��1,��2,�
3

8
�2�1 + 3a1��1 + 3a2�

+ �1 − a1��1 − a2�cos 2�� . �12�

This formula could also be obtained directly from Eq. �10�
taking into account that in the t integration only the terms
with large t contribute to the final integral. Expanding the
whole integrand for large t returns us to Eq. �12�. The n=0
term of this formula for two identical cylinders corresponds
to classical dipolar-fluctuation forces as analyzed in Ref. 13.

At low temperatures, when the summation over the Mat-
subara frequencies can be turned into an integral over n with
dn=	 / �2�kBT�d�, the corresponding interaction free energy
is

G��,�� = −
	

128�2

�2R1
2R2

2

c4 sin �
�

0

�

d��4�1,��i���2,��i���m�i��2

��
0

�

tdt
e−2��m�i���/c��t2+1

�t2 + 1�
g̃�t,a1�i��,a1�i��,�� . �13�

We now rework this equation to obtain the retarded result for
the interaction between two semiconducting cylinders. Note
here that we cannot derive the Casimir limit properly as our
formulation is not valid for nominally infinite zero-frequency
�Drude-type� dielectric response. For that case see Ref. 10.
First instead of variable �, we introduce x= �

c
�t2+1�. Then,

following closely the arguments in Ref. 14 we obtain the
interaction free energy in the form

DISPERSION INTERACTIONS BETWEEN OPTICALLY… PHYSICAL REVIEW B 80, 165414 �2009�

165414-3



G��,�� = −
	c

128�2

�2R1
2R2

2

�5 sin �
�m�0�2�1,��0��2,��0�

��
0

�

dxx4�
0

�

tdt
e−2��m�0�x

�t2 + 1�7/2 g̃�t,a1�0�,a2�0�,�� .

�14�

Here �m�0� and a1�0� ,a2�0� denote the static, i.e., zero fre-
quency, values of the corresponding functions. Obviously in
this regime the interaction free energy decays faster with
separation, being a reflection of the retardation. All the fre-
quency dependence of the material properties is reduced to
the static response in this limit, just as in the general Lifshitz
analysis.14

B. Parallel cylinders

The analysis here is somewhat more complicated because
the pair interaction energy between the cylinders involves the
inverse Abel transform.15 We start with

d2G��,� = 0�
d�2 =

kBT

2�


n=0

�

��
0

�

QdQ
d2f��,� = 0�

d�2 , �15�

where

d2f��,� = 0�
d�2 = −

v1v2�1,��2,�

32

e−2��Q2+�m�n
2/c2

�Q2 + �m

�n
2

c2 	
��2��1 + 3a1��1 + 3a2�Q4 + 2�1 + 2a1 + 2a2

+ 3a1a2�Q2�m

�n
2

c2 + 2�1 + a1��1 + a2��m
2 �n

4

c4 
+ �1 − a1��1 − a2��Q2 + 2�m

�n
2

c2 	2� �16�

and again v1=N�R1
2�v2=N�R2

2� and a=
2��

��
. We continue by

introducing the Abel transform and its properties. Namely, if
we define

�
−�

+�

g���2 + y2�dy = f�y� �17�

then

g��� = −
1

�
�

�

+� f��y�dy
�y2 − �2

. �18�

Taking this into account when considering Eqs. �16�, we re-
main with

g��� = −
kBT

32
R1

2R2
2


n=0

�

��1,��2,��
�

+� dy
�y2 − �2�

0

�

QdQ

�
e−2y�Q2+�m�i�n��n

2/c2

�Q2 + �m�i�n�
�n

2

c2 1/2

�h�a1�i�n�,a2�i�n�,Q,�m�i�n�
�n

2

c2  , �19�

where

h�a1,a2,Q,�m

�n
2

c2 	 = 2��1 + 3a1��1 + 3a2�Q4

+ 2�1 + 2a1 + 2a2 + 3a1a2�Q2�m

�n
2

c2

+ 2�1 + a1��1 + a2��m
2 �n

4

c4 
+ �1 − a1��1 − a2��Q2 + 2�m

�n
2

c2 	2

. �20�

As before, we introduce pn
2=�m�i�n�

�n
2

c2 �2, u=Q�, and y
→y /�. This allows us to rewrite the above integrals as

g��� = −
kBT

32

R1
2R2

2

�5 

n=0

�

��1,��2,��
1

+� dy
�y2 − 1

�
0

�

udu

�
e−2y�u2+pn

2

�u2 + pn
2�1/2h�a1�i�n�,a2�i�n�,u,pn

2� �21�

and

h�a1�i�n�,a2�i�n�,u,pn
2� = 2��1 + 3a1��1 + 3a2�u4

+ 2�1 + 2a1 + 2a2 + 3a1a2�u2pn
2 + 2�1 + a1��1 + a2�pn

4�

+ �1 − a1��1 − a2��u2 + 2pn
2�2. �22�

This is the final result for the interaction between two paral-
lel thin cylinders at all separations and contains retardation
effects explicitly. In general, the above expression can only
be evaluated numerically once the dielectric spectra of com-
ponent substances are known.

In the nonretarded limit, c→�, the above formula reduces
to

g��;c → �� = −
kBT

32

R1
2R2

2

�5 

n=0

�

��1,��2,��3 + 5�a1 + a2�

+ 19a1a2��
1

+� dy
�y2 − 1

�
0

�

u4due−2yu

= −
9kBT

�64 � 32��
�2R1

2R2
2

�5 

n=0

�

��1,��2,��3 + 5�a1�i�n�

+ a2�i�n�� + 19a1�i�n�a2�i�n�� . �23�

For the case where the two interacting cylinders are com-
posed of solid isotropic dielectric materials this form of the
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interaction free energy can be compared with the result ob-
tained by Barash and Kyasov �Eq. 10 in Ref. 10� and can be
reduced to it exactly. Again the n=0 term of this formula for
two identical cylinders corresponds to classical dipolar fluc-
tuation forces as analyzed in Ref. 13.

As with skewed cylinders, we can take the zero-
temperature limit where the summation over the Matsubara
frequencies becomes an integral over n with dn
=	 / �2�kBT�d�. Again we introduce x= �

c
�t2+1�. Then, as

for skewed cylinders, we obtain the interaction free energy
per unit length of two parallel cylinders

g��� = −
	c

64�3

�2R1
2R2

2

�6 �m�0�5/2�1,��0��2,��0�

��
0

�

dxx5�
1

+� dy
�y2 − 1

�
0

� tdte−2��m�0�yx

�t2 + 1�7/2 h̃�t,a1�0�,a2�0�� .

�24�

Here

h̃�t,a1,a2� = 2��1 + 3a1��1 + 3a2�t4

+ 2�1 + 2a1 + 2a2 + 3a1a2�t2

+ 2�1 + a1��1 + a2�� + �1 − a1��1 − a2��t2 + 2�2.

�25�

The spatial dependence is, again, one power higher in the
retarded regime than in the nonretarded regime. All the fre-
quency dependence of the material properties in the retarded
limit is again reduced to the static response as in the Lifshitz
analysis.14

III. NUMERICAL RESULTS: RETARDED VS
NONRETARDED INTERACTION

Expressions for the van der Waals dispersion-interaction
free energy between parallel and skewed cylinders derived
above can be analyzed numerically, once the spectral prop-
erties of the interacting cylinders are given. In all the results
in this section, the medium between cylinders is assumed to
be vacuum, �3�i��=1, and the temperature is T=297 K. The
spectral properties of the cylinders are taken to be those of
thin single-walled nanotubes as calculated by ab initio meth-
ods in the optical range.5 Robust quantum-mechanical codes
have been developed to give us the very accurate spectral
data needed to investigate the numerical consequences of the
above theory. Without going into details, we should note that
the dielectric spectral data depend on chirality and some
SWCNTs even exhibit significant optical anisotropy between
their radial and axial directions.16 For purposes of illustration
of the theory developed here, we choose �5,1� and �29,0�
semiconducting carbon nanotubes, which have been previ-
ously analyzed and which differ substantially in their radii as
well as spectral properties.17 This choice is motivated by the
fact that although �4,2� is technically the smallest
SWCNT—it has a radius of only 0.207 nm—the �5,1� and
�29,0� have a bigger difference in their spectra and are thus
more appropriate to explore the effect of disparate dielectric
spectra on van der Waals dispersion forces.

The theory developed here should be safely applied to this
case since the nanotubes are not metallic and their dielectric-
response functions are thus always bounded. Furthermore,
their dielectric responses and radii �1.135 and 0.218 nm for
�29,0� and �5,1� SWCNTs, respectively, when measured from
the center of the cylinder to the centers of the carbon atoms�
are very different, which is another reason for choosing these
tubes as the benchmark for application of the theory. For
illustrative purposes we also disregard the finite core size of
the �29,0� SWCNT that would require a more careful mod-
eling of its effective dielectric response2 and thus introduce
additional parameters that would complicate the understand-
ing of the retardation effects in van der Waals dispersion
interactions between these two SWCNTs, which is our pri-
mary aim in this paper. Once the surface-to-surface separa-
tion between two SWCNTs is greater than approximately
two SWCNT outer diameters2 this approximation turns out
to work quite well.

A. Parallel cylinders

It seems plausible that retardation effects are largest in the
parallel configuration. Although the calculations are most de-
manding in this case, we nevertheless analyze it first. In Fig.
2, we show the interaction free energy per unit length for two
parallel �5,1� SWCNTs �panel a�, two parallel �29,0�
SWCNTs �panel b�, and parallel �5,1� and �29,0� SWCNTs
�panel c�.

It is obvious, Fig. 2, that the departure of the retarded
results from the nonretarded ones takes place only when
separations are larger than about 50 nm but the strength of
van der Waals interaction there is weak, on the order of
10−8 kBT /nm �Ref. 18� for �5,1�-�29,0� pair of SWCNTs.
One can see very gradual deviation of the retarded results
from �−5 to �−6 scaling with the separation distance �note log
scale on both axes�.

For �=2 nm, the fully retarded value of the van der
Waals interaction for the �5,1�-�29,0� pair is
−0.13294 kBT /nm while the nonretarded value is
−0.13377 kBT /nm so the contribution of retardation at this
distance is only about 0.6%. The nonretarded value of inter-
action then is of some use for a large interval of intercylinder
separations due to the strict power-law behavior of the non-
retarded values 
�−5. For example, for �=16 nm, the inter-
action is −0.13377�2 /16�5=−4.0823�10−6 kBT /nm. The
full retarded interaction at this distance �16 nm� is −3.5725
�10−6 kBT /nm and one can see the increasing importance
of retardation effects for larger distances � �12.5% at �
=16 nm�.

Their importance can be boosted when considering inter-
actions between different types of SWCNTs in a dielectric
medium with appropriate �or even “tailored”� response. In
that case and depending on the full dielectric spectra of the
two cylinders and of the medium, retardation coupled to the
dielectric spectra can, in principle, lead to a change in sign of
the interaction via a similar mechanism that was first consid-
ered for the interaction of ice with vacuum across a liquid
film, as studied by Elbaum and Schick.19 �In that case, the
two half spaces are ice and vacuum while the dielectric me-
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dium between is water�. These effects will be investigated in
Sec. IV. Note that the sign change can also be obtained for
hollow cylinders at small separations but it has a different
origin.17

Of all the three cases considered, the van der Waals at-
traction is the strongest for the pair of �29,0� SWCNTs
�−0.5325 kBT /nm at �=4 nm�. The most important reason
for this is the explicit dependence of the van der Waals in-
teraction on radii of the two cylinders �R1

2R2
2�. The radius of

�29,0� SWCNT is 5.21 times bigger than the radius of �5,1�
SWCNT.

B. Skewed cylinders

These calculations are numerically less demanding since
the dimensionality of integration is one rather then two for
parallel cylinders. In Fig. 3, we present the dependence of
the van der Waals interaction free energy for two �5,1�
SWCNTs �panel a�, two �29,0� SWCNTs �panel b� and, �5,1�

and �29,0� SWCNTs �panel c� crossed at the right angle ��
=� /2�. The contribution of retardation is smaller than 1%
for ��2 nm. Its observable effects in this configuration take
place at about 30 nm, similar as in the case of parallel nano-
tubes. The retarded and the nonretarded values for the van
der Waals interaction for �5,1�-�29,0� pair separated by �
=2 nm are −0.3255 kBT and −0.3285 kBT, respectively.
The contribution of retardation effects to the van der Waals
interaction at this distance is thus 0.9%, similar to the case of
parallel SWCNTs, and, interestingly, somewhat larger. The
dependence of the pair interaction on separation is 
�−4 for
the nonretarded case but one can see a gradual transition
toward the 
�−5 dependence for large distances. Again, the
interaction is strongest for a pair of �29,0� carbon nanotubes.

The dependence of the van der Waals interaction on the
relative orientation angle ��� is of interest since it can be
used to calculate the effective van der Waals torque that acts
to make the cylinders parallel. The dependence of the van
der Waals interaction on the angle for �=4 nm is shown in

[5,1] - [5,1]

[29,0] - [29,0]

[5,1] - [29,0]

1 10 100 1000
[nm]

nonretarded

retarded

(a)

(b)

(c)

FIG. 2. �Color online� The van der Waals interaction free energy
per unit length between two parallel �5,1� SWCNTs �panel a�, two
parallel �29,0� SWCNTs �panel b�, and parallel �5,1� and �29,0�
SWCNTs �panel c� as a function of their separation. Circles repre-
sent the nonretarded expression �Ref. 2� while squares represent the
fully retarded calculation Eq. �21�. Dashed and dotted lines indicate
�−5 and �−6 dependences, respectively. The interaction free energy
is calculated only for interaxial separations larger than �=R1+R2,
i.e., in the nonintersecting regime of the cylinders. Close to this
value the thin cylinder approximation breaks down and is super-
seded by a different type of calculation, see Ref. 5 for details.

1 10 100

nonretarded

retarded

[5,1] - [5,1]

[29,0] - [29,0]

[5,1] - [29,0]

(a)

(b)

(c)

[nm]

FIG. 3. �Color online� The van der Waals interaction free energy
for two �5,1� SWCNTs �panel a�, two �29,0� SWCNTs �panel b�,
and �5,1� and �29,0� SWCNTs �panel c� crossed at the right angle
��=� /2� as a function of their separation. Circles represent the
nonretarded expression �Ref. 2� while squares represent the fully
retarded calculation Eq. �21�. Dashed and dotted lines indicate �−4

and �−5 dependences, respectively. The interaction free energy is
calculated only for interaxial separations larger than �=R1+R2, i.e.,
in the nonintersecting regime of the cylinders. Close to this value
the thin cylinder approximation breaks down and is superseded by a
different type of calculation, see Ref. 5 for details.
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Fig. 4. Note that the torque vanishes for �=� /2. One should
also note that for �=0 the van der Waals interaction calcu-
lated from Eq. �10� diverges. This is due to the fact that the
interaction free energy for parallel cylinders scales with their
length and thus diverges for infinitely long cylinders. It is
clear from Eqs. �10� and �12� that the angular dependence of
the van der Waals interaction depends on the details of the
dielectric response of the cylinders. Nevertheless, a quick
look at panel a� of Fig. 4 may lead one to think that the
angular dependencies for all three cases are completely the
same up to some multiplicative constant. This is in part due
to the divergence introduced by the 1 /sin � factor which
tends to screen the fine details of the interaction. However, a
closer look indeed shows that the angular anisotropies are
not scalable as is shown in panel b� of Fig. 4, where all three
interactions have been scaled so as to reproduce the value of
�5,1�-�29,0� interaction at �=� /2 �this means that the scaling
factor for �5,1�-�29,0� interaction is 1�. One can see how the
curves separate as � diminishes, and that �5,1�-�5,1� case has
the largest angular anisotropy of the van der Waals interac-
tion. The effect is relatively small, however, and the 1 /sin �

factor determines the anisotropy to the largest extent, at least
for the cases considered here.

IV. INFLUENCE OF THE DIELECTRIC RESPONSE OF
BATHING MEDIUM ON THE VAN DER WAALS

INTERACTION: ATTRACTIVE, REPULSIVE, OR BOTH?

That van der Waals forces in the presence of the bathing
medium can be repulsive was demonstrated for the case of
plates in Ref. 20. An interesting question is whether the
cylinder-cylinder interaction can be repulsive and how that
depends on the dielectric responses of the cylinders and the
bathing medium �this can be achieved only when the cylin-
ders are different�. The answer is somewhat hidden in Eq.
�21� and much more explicit in Eq. �23�. In both of these
equations, the van der Waals interaction depends on the
product �1,��2,� which appears under the sum over Matsub-
ara frequencies. There is, however, the additional term that
multiplies it �3+5�a1+a2�+19a1a2 for parallel cylinders in
the nonretarded regime� that depends on both the longitudi-
nal and transverse polarizabilities of the cylinders. A closer
examination of Eq. �6� shows that for isotropic cylinders a is
necessarily positive so that the additional term is also posi-
tive when both cylinders are isotropic, at least in the nonre-
tarded regime. Parameter a is negative only when the dielec-
tric response of the medium is between the longitudinal and
transverse responses of the cylinder, and even then, the sign
of the additional term depends on the details of the response
of the other cylinder. It thus seems that the repulsive nature
of van der Waals interaction can be most easily obtained and
comprehended when it is enforced through the longitudinal
response of the two cylinders. Assuming now that the terms
that multiply �1,��2,� �two-dimensional integral in the re-
tarded case and relatively simple combination of transverse
and longitudinal dielectric responses in the nonretarded case�
are positive, one concludes that the repulsive van der Waals
interaction can be obtained by making the product �1,��2,�

negative for all imaginary frequencies, i.e., that �see Eq. �4��

��1,�
c �i�� − �m�i�����2,�

c �i�� − �m�i��� � 0, ∀ � �26�

�a completely analogous finding has been recently verified
experimentally for the repulsive interaction between gold
sphere and silica plate immersed in bromobenzene21�. This
leads us to an interesting conception of “designing” the van
der Waals interaction between the cylinders by the introduc-
tion of an appropriate intervening medium. A simplest way
which should produce repulsive interaction �at least in the
�1,��2,� “channel”� is to “construct” the medium dielectric
response as

�m�i�� =
�1,�

c �i�� + �2,�
c �i��

2
. �27�

Since dielectric responses are difficult to measure experi-
mentally the “designer” response above would have to be
engineered by the use of ab initio codes to fill this gap.

The assumption that the above dielectric response of the
intervening medium leads to repulsive dispersion interac-
tions between two SWCNTs can be easily checked numeri-
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FIG. 4. �Color online� Panel �a�: the van der Waals interaction
energy between two �5,1� SWCNTs �pluses�, two �29,0� SWCNTs
�x-es�, and �5,1� and �29,0� SWCNTs �stars� separated by �
=4 nm as a function of their relative angle �fully retarded calcula-
tion�. Panel �b�: the same as in panel �a�, only the energies have
been rescaled so that the three cases yield the same value for �
=� /2.
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cally and, as shown in Fig. 5, the van der Waals interaction
between �5,1� and �29,0� SWCNTs is indeed repulsive, at
small distances �, but an interesting effect takes place when
��35 nm. Namely, the retarded van der Waals interaction
changes sign, becoming attractive when ��35 nm and with
an extremely shallow minimum ��10−10 kBT /nm� at �
�36 nm. This effect is not seen in the nonretarded van der
Waals interaction which is repulsive for all distances �. Al-
though we wanted to construct the medium response so as to
obtain the repulsive van der Waals interaction, the retardation
effects act in such a way that they change the sign of inter-
action at a certain separation distance. This effect is quite
similar to what has been found in Ref. 19 and it is of interest
to see whether it can be “boosted” and brought to smaller
separation distances by a carefully guided choice of the me-
dium in between the cylinders.

Retardation acts so as to screen the contribution of higher
Matsubara frequencies to the total value of the van der Waals
interaction. This effect becomes more important as the sepa-
ration distances increase.7 It thus seems possible to design a
dielectric response of the medium so that the retardation
screens the repulsive large n contributions to the summation
in Eq. �21�, switching from repulsive to attractive behavior
for some �. One can even imagine a medium in which the
van der Waals interaction between the cylinders would be
attractive for small �’s and repulsive for large �’s. This shall
be illustrated by several examples.

The longitudinal dielectric responses of �5,1� and �29,0�
SWCNTs are shown in Fig. 6. The two model medium re-
sponses are indicated by dashed and dotted lines, respec-
tively. The two responses are modeled as �m�n�=1
+2.215 exp�−0.015n� �dashed line, model 1� and �m�n�=1
+2.305 exp�−0.015n� �dotted line, model 2�, where n is the
Matsubara frequency index. The two model medium re-
sponses are quite similar. Examination of the nonretarded
variant of the van der Waals interaction �Eq. �23��, suggests

that there exists a possibility of observing interesting effects
in the longitudinal channel of dielectric response. Namely,
the product �1,��2,� is positive when n�10, negative when
10�n�200, and again positive when n�200. Thus, the
contributions to the total �summed� van der Waals interaction
are both positive and negative, depending on the value of n.
As retardation screens the contribution from larger values of
n at large separation distances, one may a priori expect to
see a change in character of van der Waals interaction �re-
pulsive vs attractive� depending on the separation distance.
This is indeed confirmed by numerical results shown in Fig.
7. However, the overall behavior of the van der Waals inter-
action, being attractive for model 1 medium, and repulsive at
short distances for model 2 medium, is even more striking.
This change can occur by quite a minor alteration of the
medium response. Note, however, that the absolute magni-
tude of �5,1�-�29,0� van der Waals interaction is a factor of
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FIG. 5. �Color online� The absolute value of the retarded
�squares� and nonretarded �circles� van der Waals interaction energy
between parallel �5,1� and �29,0� SWCNTs as a function of their
separation �. The intervening medium is described as Eq. �27�. The
retarded van der Waals interaction is repulsive when ��35 nm and
attractive when ��35 nm.
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FIG. 6. �Color online� Longitudinal dielectric responses of �5,1�
�pluses� and �29,0� �x-es� SWCNTs as a function of the Matsubara
frequency index. Two model medium responses are indicated by
dashed and dotted lines �see text�.
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FIG. 7. �Color online� Retarded van der Waals interaction en-
ergy per unit length between parallel �5,1� and �29,0� SWCNTs.
Pluses �x-es� indicate the results for the medium response shown by
dashed �dotted� line in Fig. 6.
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200 smaller with respect to the case when the SWCNTs are
in vacuum ��0.0005 kBT /nm in medium vs �0.13 kBT /nm
in vacuum at �=2 nm�. An expected minimum in the van
der Waals interaction is observed in model 2 of the medium
at ��17 nm but its depth is quite small ��10−8 kBT /nm�.
The origin of this effect is exactly the same as in the case
studied by Elbaum and Schick—the medium dielectric re-
sponse �water in their case� is such that the product
��1,�

c �i��−�m�i�����2,�
c �i��−�m�i��� is both positive and

negative, depending on the Matsubara frequency, i�n �there
is a crossover �or several crossovers� between the medium
dielectric response and one of the cylinders’ responses�. In
the case studied by Elbaum and Schick, the medium re-
sponse �water� is quite similar to the response of one of the
two half spaces �ice�. This leads us to experiment a bit more
with the medium response, making it more similar to the
response of one of the cylinders. The results of one such
experiment are shown in Fig. 8. The minimum in now lo-
cated at quite small separations �3.5 nm� and its depth is
larger �5.3 10−6 kBT /nm�. We also observe a maximum
��2 10−4 kBT /nm at �1.5 nm� in a narrow repulsive re-
gion of interaction separating the two attractive interaction

regions ���1.4 nm and ��2.7 nm�. This interesting effect
was not observed in the previous models. We should also
note here that the appearance of the minimum in the interac-
tion is quite a delicate effect that needs precise tuning of the
parameters of the medium response. From our numerical
analysis we found that while it is in general easy to obtain
purely repulsive or purely attractive interactions, the mini-
mum in the interaction appears as quite a special effect and
only in a narrow region of parameters describing the re-
sponse of the intervening medium.

V. DISCUSSION

The derivation of van der Waals dispersion interaction
between two anisotropic dielectric cylinders presented here,
based on the Pitaevskii ansatz, is valid when the interaction
energy either scales linearly with the length, as in the case of
parallel cylinders, or does not scale with the length at all, as
in the case of skewed cylinders. All the cases where the
finite-cylinder-length effects come into play are not covered
by this derivation. In addition the cylinder radius has to be
the smallest length involved in the problem. Another draw-
back of this method is that the cases of infinitely large di-
electric response as in the metallic SWCNTs that show a
Drude-type response at zero frequency cannot be dealt with
within the framework proposed here. The zero-frequency
term in the Matsubara summation would have to be treated
differently10 for those cases.

Despite these drawbacks the present approach yields the
final result for the calculation of van der Waals dispersion
interactions between infinitely long semiconducting and in-
sulating anisotropic SWCNTs. We derived all the appropriate
limits and showed how the details and peculiarities of the
dielectric response of various SWCNTs effect this interaction
and can in general lead also to nonmonotonic van der Waals
dispersion interactions of a type analogous to those found by
Elbaum and Shick in the case of an aqueous layer on the
surface of ice.19

We analyzed in detail also the effect of retardation at suf-
ficiently large intercylinder spacings. The general conclusion
is that these effects constitute about one half of total interac-
tion at separation of �100 nm for parallel cylinders and at
somewhat smaller separation of �50 nm for skewed cylin-
ders, becoming more important in the relative terms as the
separation increases. In its retarded form, that decays one
distance power faster than the nonretarded form, the disper-
sion interactions between cylinders are in general small, only
a fraction of kBT per nm length of the cylinder. Nevertheless
these effects are real and can be significant for sufficiently
long carbon nanotubes.

Since the dispersion interactions depend in a complicated
way on the dielectric properties of the interacting anisotropic
cylinders there exists a possibility that between two different
types of SWCNTs with sufficiently different dielectric spec-
tra, the interaction would become repulsive, or even show a
nonmonotonic separation dependence. Such variation in van
der Waals dispersion interaction has been observed in other
contexts.19 These delicate effects in themselves do not de-
pend on the fact that the interacting cylinders are anisotropic.
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FIG. 8. �Color online� Panel �a� represents the longitudinal di-
electric responses of �5,1� SWCNTs �pluses�, �29,0� SWCNTs �x-
es�, and a hypothetical medium �dashed line� as a function of the
Matsubara frequency index. Panel �b� shows the �retarded� van der
Waals interaction energy per unit length between parallel �5,1� and
�29,0� SWCNTs in such a medium.
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In fact, they persist even when the cylinders are made of
isotropic dielectric materials as is apparent from the formal-
ism we presented.
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