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A simple tight-binding model is used to illustrate how the time dependence of a state vector can be
obtained from all the eigenvalues and eigenvectors of the Hamiltonian. The behavior of the
eigenvalues and eigenvectors is studied for various parameters and allows us to study scatteringlike
events, impurity states, and localization in disordered systems. © 2006 American Association of Physics
Teachers.
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I. INTRODUCTION

For most physics students the Schrödinger representation
of quantum mechanics is more appealing than the matrix or
Heisenberg representation. The reason is due in part to the
fact that the Schrödinger representation is more suited for
visualization.1,2 Also, most students are more accustomed to
thinking in terms of functions rather than in terms of abstract
eigenvectors.

In this article I discuss a simple but versatile tight-binding
Hamiltonian whose eigenvalues, eigenvectors, and dynamics
can be obtained and easily visualized in the matrix represen-
tation. The solution of the physical system represented by the
Hamiltonian is obtained numerically by using a short pro-
gram that is given in Appendix A. The code allows for visu-
alization of the spectrum of eigenvalues and eigenvectors
and also the dynamics generated by the Hamiltonian.

The model Hamiltonian of a one-dimensional chain with
nearest-neighbor couplings is discussed in Sec. II and a com-
plete set of states describing the single particle dynamics is
introduced. Section III briefly describes how the Hamiltonian
generates the time dependence of an initial state vector and
demonstrates that the eigenvalues and eigenvectors define
the dynamical behavior of the system. In Sec. IV I discuss
several applications that are of pedagogical interest. In par-
ticular, the dynamics of a state initially localized on a par-
ticular site is studied. The dynamics is correlated with the
spectrum of the Hamiltonian and properties of its eigenvec-
tors �localized versus delocalized�. Several aspects of the
problem that are of research interest are discussed, including
the problems of localization and conductance in chainlike
molecules, such as DNA.

II. DEFINITION OF THE PROBLEM

Consider the Hamiltonian,

H = �
i

Eici
†ci + �

i

Ti�ci+1
† ci + ci

†ci+1� , �1�

where ci
† and ci are the creation and destruction operators of

a particle on site i, respectively. The Hamiltonian represents
a chain of sites denoted by indices i; a particle can hop from
one site to another due to the nonvanishing values of Ti,
which are often called hopping matrix elements.

We restrict our attention to a single particle �or, more gen-
erally, an excitation� propagating through the chain. The dy-
namics can be described in a position-occupation basis, that

is, a basis of states denoted by ��i� , i=1, . . . ,N	 such that
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�i� = �00, . . . ,1i, . . . ,0� , �2�

where i denotes a particular site occupied by an excitation
and N denotes the total number of sites. The action of c
operators in this basis is simple,

ci
†�0� = �i� , �3a�

ci�i� = �0� , �3b�

ci�j� = 0, i � j , �3c�

where we consider only singly occupied states; the vacuum
is denoted by �0�. In the basis that is restricted to singly
occupied states, we can equivalently �and without reference
to creation/destruction operators� represent the Hamiltonian
as

H = �
i

Ei�i�
i� + �
i

Ti��i + 1�
i� + �i�
i + 1�� . �4�

The position-occupation basis does not diagonalize the
Hamiltonian in Eq. �1�, except in the trivial case of Ti=0 for
all i. However, it is the basis that is simplest conceptually
and most easy to visualize.

Equation �1� is a simplified tight-binding Hamiltonian and
is discussed in many textbooks on condensed matter physics
�see for example, Ref. 3�. Its matrix representation is easy to
construct. The simplest and numerically most feasible way is
to consider a tridiagonal matrix in the position-occupation
basis �Eqs. �2� and �3�� as

H =�
E1 T1 0 0 ¯ 0 0

T1 E2 T2 0 ¯ 0 0

0 T2 E3 T3 ¯ 0 0

] ] ] ] � ] ]

0 0 0 0 ¯ EN−1 TN−1

0 0 0 0 ¯ TN−1 EN

� . �5�

The Hamiltonian is represented in a basis of singly occupied
states; that is, we consider only this subset of states of Fock
space �which includes multiply occupied states; for example,
we might want to consider the dynamics of two excitations�.
Note that the Hamiltonian defined in Eq. �1� cannot induce
transitions between the Fock subspaces corresponding to a
different total number of excitations.

Periodic boundary conditions are not imposed in the ma-
trix representation in Eq. �5�. Periodic boundary conditions

would require nonvanishing �1,N� and �N ,1� elements, that
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is, the upper right and the lower left corner of the matrix. The
matrix in Eq. �5� can be easily set up and diagonalized nu-
merically. It is enough to specify only two arrays of real
numbers, one of length N which contains the diagonal values
of the matrix, and the other of length N−1 which contains
the elements of the Hamiltonian matrix along its first subdi-
agonal.

III. TIME DEPENDENCE OF STATE VECTORS

Let us assume that all the eigenvalues �k and eigenvectors
��k� of the Hamiltonian H are known �H��k�=�k��k��. We fur-
ther assume that the system is at time t=0, in some known or
prepared state ���t=0��. The state ���t=0�� can be projected
onto the basis of eigenvectors of the full Hamiltonian,

���t = 0�� = �
k

ak��k� , �6�

where the projection coefficients ak are given by

ak = 
�k���t = 0�� , �7�

because the ��k� are assumed to be orthonormal, that is,


�m��n� = �m,n. �8�

Let us denote the time evolution operator by U�t�; that is,
U�t� acts on an arbitrary state ���t=0�� and evolves it to the

Fig. 1. Time dependence of the probability distribution �bm,1�2 for a com-
pletely regular chain. The excitation was initially localized on the first site,
that is, ���t=0��= �1�. The time is measured in units of � /e and the number
of sites N=500.
state ���t��,
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U�t����t = 0�� = ���t�� . �9�

The action of the time evolution operator on the eigenvectors
of the problem is trivial,4

U�t���k� = exp�− i�kt/����k� , �10�

which implies that

���t�� = �
k

ak exp�− i�kt/����k�

= �
k


�k���t = 0��exp�− i�kt/����k� . �11�

We assume that the wave function �or state vector� is ini-
tially chosen to be localized on a particular site l of the chain,
that is, ���t=0��= �l�. We are concerned about the probability
that after some time t the excitation is on some other site m.
To obtain this information, the state vector ���t�� must be
projected onto the position-occupation basis, that is, we

Fig. 2. Eigenvalues and three characteristic eigenvectors of a regular chain.
�a� Hamiltonian eigenvalues; �b� eigenvector of the lowest energy eigenstate
��k=0.8e�; �c� eigenvector of eigenstate with energy �k=0.999 37e �250th
eigenstate�; and �d� eigenvector of eigenstate with energy �k=1.2e �highest
energy eigenstate�. The insets in �c� and �d� show the eigenvector magnitude
between the 100th and 120th sites �these are blowups of the eigenvector
magnitude in the regions bounded by the two thin rectangles in the main
plots�.
should calculate N projections bm,l�t�
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bm,l�t� = 
m���t�� = �
k


�k�l�
m��k�exp�− i�kt/�� . �12�

The quantity �bm,l�t��2 is the probability that at time t, the
excitation initially localized on site l is found on site m. A
pedagogical account of the definition of probability current
in tight-binding problems can be found in Ref. 5.

IV. APPLICATIONS OF THE MODEL

As mentioned, the matrix in Eq. �5� can be diagonalized
numerically. One possible way of doing so is described in
Appendix A, which lists a sample program to set up the
Hamiltonian matrix and diagonalize it. The result of this nu-
merical procedure is an array of N Hamiltonian eigenvalues
�k and an N�N matrix �or 2D array� of eigenvectors ��k�,
which provides a complete solution of the problem, includ-
ing its time dependence. In the following I present several
applications of the code.

A. Regular chain, propagation of the initially localized
state

I first consider a completely regular chain, that is, a chain
in which Ei=E and Ti=T for all i. The characteristic energies
�E� and the hopping matrix elements �T� are set to E=e and
T=−0.1e, where e denotes the energy scale. Note that the
chosen energy scale also fixes the characteristic time scale,
which is given by � /e �see Eq. �12��. The results of this

Fig. 3. Time dependence of the probability distribution for a regular chain
with a special link inserted between the 250th and the 251st site of the chain
�denoted by dashed lines in the plots�. The time is measured in � /e.
calculation are given in Figs. 1 and 2. It is clearly observed
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how the initially localized state delocalizes over many sites
and eventually hits the right end of the chain, reflecting from
it. The horizontal axis in the plots is the site index which is in
principle unrelated to any characteristic length. The spatial
dimensions are hidden in the hopping �or overlap� matrix
elements Ti; the more separated the atomic orbitals Ei are,
the smaller their overlap and the corresponding hopping ma-
trix element.3

Figure 2 displays the eigenvalues of the Hamiltonian and
three characteristic eigenvectors. Note the fast oscillatory be-
havior of the eigenvectors for high-energy states �insets in
�c� and �d� panels of Fig. 2�. The eigenvalues of the Hamil-
tonian are indistinguishable from the analytical solution,
which are given by6

�k = E + 2T cos�k�/�N + 1�� , �13�

where k is the eigenvalue index �k=1, . . . ,N�, that is, a co-
sine band of states of width W4T=0.4e. The exact solu-
tion for the periodic tight-binding chain is3

��k� = E + 2T cos�2k�/N�, �k = 1, . . . ,N� . �14�

Note the extra factor of 2 in the argument of the cosine
compared to Eq. �13� and that the eigenvalue �k has been
rewritten as ��k�, so that it appears as a function of the ei-
genvalue index. In the periodic case, it makes sense to char-

Fig. 4. Eigenvalues and the two eigenvectors corresponding to impurity
excitation states. �a� Hamiltonian eigenvalues; �b� eigenvector of the lowest
energy eigenstate ��k=0.75e�; and �c� eigenvector of highest energy ��k

=1.25e�. The two sites that are connected with an impurity link are denoted
by dashed lines in �b� and �c�.
acterize the eigenvalues by the wave vector, that is, k be-
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comes more than an eigenvalue index and has a direct
interpretation in terms of the characteristic wavelength for
each eigenstate. This issue is discussed in more detail in
Appendix B.

Note that Eqs. �13� and �14� are not very different for large
N. In the limit of infinite N, the bandwidth, defined as the
difference between the largest and smallest eigenvalues, is
the same in both cases, as well as the density of states de-
fined as

���� = �
k

��� − �k� . �15�

There is one important difference, that is, the double degen-
eracy of states given by Eq. �14� for states with k1= l and
k2=N− l, l=1, . . . ,N−1, which is not the case in Eq. �13�.

B. One defect link in a chain, simulation of scattering

In this section a special link is introduced between sites
250 and 251 in a chain with N=500 total sites such that
T250=−0.2e, and all other links are the same as before, Ti=
−0.1e for all i, i�250. This modification of the hopping
matrix will allow us to study the effects of the impurity link
on the eigenvalue spectrum and propagation of the initially
localized state.

The evolution of a state vector initially localized on the

Fig. 5. Eigenenergies and three characteristic eigenvectors of the Anderson’s
diagonal disorder Hamiltonian.
first chain site is displayed in Fig. 3. Note how part of the
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probability density is reflected from site 250 and 251, while
the other part continues its propagation toward the end of the
chain.

The eigenvalue spectrum is shown in Fig. 4. Note the
appearance of two states that detach from the band. The
eigenvectors of two special states are also displayed in Fig.
4. The two states separated from the band correspond to the
excitations that are localized on the special sites 250 and
251, that is, these states are related to excitations of impurity
sites.

C. Anderson’s diagonal disorder Hamiltonian

We now study a case in which randomness is introduced in
the Hamiltonian matrix. The orbital energies Ei are given
random values in a band of width W. Because these numbers
are along the diagonal of the Hamiltonian, the model is said
to have diagonal disorder. The subdiagonal matrix elements
are the same as before �Ti=T=−0.1e�. There are a number of
interesting issues related to this model, one of which is called
Anderson localization. The suitably modified code in Appen-
dix A can be used to study the Anderson’s diagonal disorder
Hamiltonian. The number of sites is increased to N=900 and
the orbital energies along the diagonal are given uniform
random values in the interval �e ,2e�, that is, W=e.

One of the features of this problem is that all the eigen-
states of the Hamiltonian are localized.7,8 The eigenvalue

Fig. 6. Time dependence of the probability distribution for a chain with
random orbital energies chosen from the interval �e ,2e�. The time is mea-
sured in � /e. Note that only the first 30 sites of the chain with 900 sites are
represented, because the site occupation probabilities are negligible beyond
the 10th site.
spectrum and three characteristic eigenvectors are shown in
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Fig. 5. The fact that all the eigenvectors are localized has a
profound influence on the propagation of an initially local-
ized state. Figure 6 displays an evolution of a state vector
initially localized on the first chain site. Occupation prob-
abilities for the first 30 sites of the chain are presented; the
site occupation probabilities are negligible beyond site 10.
Note that the times shown are very long �t=1016� /e�. We
conclude that the propagation of the excitation through the
chain is not only slow, but is effectively blocked—the exci-
tation remains localized in the vicinity of the site at which it
was initially created.7,8 The blockage of the excitation propa-
gation is related to the fact that the projection coefficients �ak
in Eq. �6�� of the initially localized state have a significant
magnitude only for several eigenstates whose localization on
the first site is nonvanishing. One of those eigenvectors �the
one whose maximum magnitude is on the first site� is very
similar to the initial state vector, and its projection coefficient
is the largest and close to 1. Thus, the initial state is almost
an eigenstate and its evolution is thus slow. Because the pro-
jection coefficients ak on eigenvectors that are localized on
sites that are very distant from the first chain site are close to
zero, the propagation through the chain is essentially
blocked. The total number of the sites that become occupied
during the evolution �about 5 to 10 as is seen in Fig. 6� is
related to the typical localization width of the eigenvectors.

D. Recent research on chains in the tight-binding
scheme

It is interesting to see how the possible correlations in the
diagonal disorder distribution influence the nature of the
eigenvectors and the spectrum of eigenvalues �see for ex-
ample, Refs. 9 and 10�. These effects could be studied with

suitable changes of the code. The localization of electronic

! on exit from DSTEV, E contains eigenvalues
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states due to disorder may drive a metal-insulator transition
�or Anderson transition� in the system, and one-dimensional
models similar to the one discussed in this article are useful
in the study of random binary alloys.11 In this case there are
only two characteristic orbital energies and their appearance
in the chain is random �for example, the appearance of the A
orbital occurs with probability p, while the appearance of the
B orbital occurs with probability 1− p�. For a random binary
alloy, the system again exhibits the localization of eigenvec-
tors, but correlations in the disorder may introduce resonant
states for which there is perfect electron transmission
through the system.

The electrical conduction of biological polymers, DNA in
particular, has also attracted much attention.11,12 An elec-
tronic coupling induced through the overlap of �z orbitals
perpendicular to the planes of the stacked base pairs in
double-stranded DNA can be simulated using the simplified
one-dimensional model in Eq. �1�, although the realistic situ-
ation is much more complicated due to the influence of vi-
brations on the distances between the base pairs and the im-
portance of the electronic structure of the DNA
backbone.12–15 Models similar to the one studied in this ar-
ticle are used to study the conduction properties of DNA
molecules.11

The model and the program in Appendix A can be easily
modified to study these problems. Correlations in the diago-
nal disorder can be studied, as well as the introduction of
disorder along the subdiagonals �hopping matrix elements�.
Localization effects can be studied in cases when the width
of the diagonal energy band W is much smaller than the
value of the hopping matrix elements T. The opposite limit

was studied in Sec. IV C.
APPENDIX A: PROGRAM FOR THE STUDY OF THE PROBLEM

The following code describes the numerical solution to the problem. Due to the brevity of the code, it is listed here along
with comments. The source code can be compiled as g77 -o chain1 chain1.for -llapack or f77 -o chain1
chain1.for -llapack, depending on the Fortran compiler installed. Note that the code should be linked to the LAPACK
library of routines.16

1 program tba1d
2 double precision E(5000), T(5000), XI(5000,5000),

& flag, work(9998), thresh, time, ReB, ImB
3 open(1, file= ’eigenvalues.dat’, status= ’unknown’�
4 open(2, file= ’eigenvectors.dat’, status= ’unknown’�
5 N=500 ! number of sites
6 thresh=0.0D0 ! threshold for random function
7 do i=1, N
8 E�i�=1.0 ! diagonal of hamiltonian matrix
9 flag=rand��
10 T�i�=−0.1 ! hopping matrix
11 if (flag.lt. thresh) then
12 E�i�=1.0+1.0�rand��
13 endif
14 enddo
15 call DSTEV(’V’, N, E, T, XI, 5000, work, info)
16 do i=1 , N
17 write(1,*) i, ’ ’, E(i)
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18 write(2,*) ’Eigenvector: ’, i
19 do j=1, N
20 write(2,*) XI(j, i)

! on exit from DSTEV, XI contains eigenvectors
21 enddo
22 enddo
23 close(1)
24 close(2)
25 l=1 ! index of initially occupied site
26 print *,’Input: time t’
27 read *, time
28 open(4, file= ’timedat.dat’, status= ’unknown’�
29 do j=1, N ! j counts chain sites
30 ReB=0.0D0
31 ImB=0.0D0 ! real and imaginary parts
32 do i=1, N ! i counts eigenstates
33 ReB=ReB+XI�l ,i��dcos�E�i��time��XI�j ,i�
34 ImB=ImB−XI�l ,i��dsin�E�i��time��XI�j ,i�
35 enddo
36 write(4,*) j, ’ ’, ReB* *2+ImB* *2
37 enddo
38 close(4)
39 end
The total number of sites in a chain N is defined in line 5.
The Hamiltonian matrix is defined between lines 7 and 14.
The parameter thresh allows for the introduction of ran-
dom orbital matrix elements �lines 11–13�; for thresh=0
the orbitals are regular, and for thresh	1 they are random
within the ranges defined by line 12 �between 1 and 2 energy
units�.

The Hamiltonian matrix is diagonalized in line 15 using
the DSTEV LAPACK routine to diagonalize tridiagonal
matrices.16 After the diagonalization, the jth column of the
matrix XI�i, j� contains the eigenvector corresponding to the
jth eigenvalue of the Hamiltonian ��� j��. The DSTEV routine
sorts the eigenvalues in ascending order.

The time dependence of the initial state vector, one of the
vectors from the ��i�	 basis in Eq. �2�, is implemented be-
tween lines 25 and 37. In particular, the part of the program
between lines 29 and 37 implements Eq. �12�. The initial
state is specified by the variable l, which represents the in-
dex of the occupied chain site at t=0.

The output is written in the file timedat.dat which can
be plotted separately. This output was used to generate Figs.
1, 3, and 6. The CPU time needed to calculate the probability
distribution does not depend on the physical time input �vari-
able time� because the program does not propagate a solu-
tion in the time domain. All the calculations needed for the
evolution of the initial state vector are performed by the di-
agonalization of the Hamiltonian matrix. This output is used
to calculate the probability distributions for arbitrary times t
�see Eq. �12��.

To implement the case of regular chain discused in Sec.
IV A, all randomness must be eliminated and thresh=0.0.
To simulate one special link �impurity or defect� in the
middle of the chain with N=500 sites �the case studied in
Sec. IV B�, we introduce the following statement between

lines 13 and 14:
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if (i.eq. 250) then
T�i�=−0.2

endif
The rest of the lattice is in a regular state and hence

thresh=0.0D0.
For the totally disordered chain with N=900 studied in

Sec. IV C, lines 5 and 6 should be changed to
5 N=900
6 thresh=1.0D0

APPENDIX B: PERIODIC VERSION OF THE
REGULAR TIGHT-BINDING CHAIN

To obtain a chain that is periodic, we have to connect the
first and the Nth sites by the hopping matrix elements.
Hence, the Hamiltonian matrix is no longer tridiagonal be-
cause it now contains nonvanishing �1,N� and �N ,1� ele-
ments. However, the Hamiltonian matrix is still symmetric.
The periodic chain is easily programed using techniques
similar to those described in Appendix A �the code can be
obtained from the author�. For the periodic case the upper �or
lower� triangle of the Hamiltonian matrix and not only its
diagonal and main subdiagonal has to be stored.

The results for a regular periodic chain are shown in Fig. 7
and compared with the case studied in Sec. IV A. The pa-
rameters of the calculation are E=e, T=−0.1e, and N=100.
The results are used to illustrate subtleties discussed at the
end of Sec. IV A. Note that the eigenvalue spectra look in-
distinguishable, but a closer inspection �inset in Fig. 7�a��
reveals that the spectrum corresponding to the periodic chain
is doubly degenerate �except for the lowest and highest en-
ergy eigenvalue�, which is not the case for the nonperiodic
chain, in agreement with the discussion in Sec. IV A. The
eigenvectors corresponding to the lowest and highest energy
eigenstate are also different �which is true for all eigenvec-

tors� although the energies of these states are similar in the
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two cases �see Eqs. �13� and �14��. For the periodic chain the
lowest energy eigenvector can be written in the position-
occupation basis as

��lowest� =
1

�N
�1,1,1,1, . . . ,1� , �B1�

Fig. 7. Comparison of the eigenvalues and two characteristic eigenvectors
for a uniform chain with nonperiodic �squares� and periodic �circles� bound-
ary conditions. The parameters are E=e, T=−0.1e, and N=100. �a� Eigen-
values of nonperiodic and periodic chain; �b� eigenvectors of the lowest
energy eigenstates; and �c� eigenvectors of the highest energy eigenstates.
and the highest energy eigenvector in the same basis is
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��highest� =
1

�N
�− 1,1,− 1,1, . . . ,1� . �B2�
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