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Abstract
Energies of a certain class of fullerene molecules (elongated, contracted and
regular icosahedral fullerenes) are numerically calculated using a
microscopic description of carbon–carbon bonding. It is shown how these
results can be interpreted and comprehended using the theory of elasticity
that describes bending of a graphene plane. Detailed studies of a wide variety
of structures constructed by application of the same general principle are
performed, and analytical expressions for energies of such structures are
derived. Comparison of numerical results with the predictions of a simple
implementation of elasticity theory confirms the usefulness of the latter
approach.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

Recent years have been marked by an accented interest
of scientists in molecules and materials made exclusively
of carbon atoms (C). This interest has been initiated by
discoveries of fullerenes [1] and carbon nanotubes [2], and
is fuelled by many different nanoscopic shapes and structures
made of carbon atoms that are continually appearing either
as a result of experimental studies [3–5] or imaginative
theoretical constructions [6–9]. Structures of interest to this
work are those in which carbon atoms are sp2 hybridized,
as in the graphene layers in graphite. Fullerenes and
carbon nanotubes fit in this category, but there are many
other different shapes and objects that can be constructed.
The multitude of possible shapes is a result of pronounced
anisotropy of carbon–carbon interactions and the relatively
low energy needed to transform a hexagonal carbon ring
into a pentagonal one. Inclusion of heptagonal rings allows
for the creation of additional, negative-Gaussian-curvature
shapes [9] that are not a subject of this paper. Carbon shapes
are of interest since the same elementary constituents (sp2

hybridized carbon atoms) can be ‘assembled’ in a variety of
stable shapes that will not spontaneously decay or transform
into other shapes once created. The resulting shapes and

structures may differ in their functionality, whatever their
purpose may be. The assembly of simple elementary pieces
into a possibly ‘engineered’ or ‘designed’ shape is a dream
of nanotechnologists, and the carbon structures are thus the
ideal benchmark system. Nanoscale shapes of biological
interest are often self-assembled—a prime example is the self-
assembly of viral coatings from individual proteins that make
them [10]. Even more intriguingly, the symmetries and shapes
of icosahedral viruses are directly related to symmetries of
‘gigantic’ fullerenes [11–13]. Both types of structures are
characterized by pentagonal ‘disclinations’ [14] (pentagonal
carbon rings in fullerenes [11] versus pentameric protein
aggregates in viruses [15]) in crystalline sheet, and both can
be constructed from the triangulation of an icosahedron. This
may be a coincidence, but may also point to more general
and fundamental principles that may still be discovered in the
study of carbon structures and shapes. Viruses, as carbon
shapes, also show the property of multiformity. The same
viral coating proteins may assemble in icosahedral shells of
varying symmetry, but may also make spherocylindrical or
conical particles or even protein sheets, depending on the
conditions [13, 15]. Similar features are found in sp2 carbon
shapes. Although various shapes can be, more or less easily,
imagined, this does not mean that they should have large

0957-4484/06/143598+09$30.00 © 2006 IOP Publishing Ltd Printed in the UK 3598

http://dx.doi.org/10.1088/0957-4484/17/14/040
mailto:asiber@ifs.hr
http://stacks.iop.org/Nano/17/3598


Energies of sp2 carbon shapes with pentagonal disclinations and elasticity theory

binding energies, or that they should be bound at all. Therefore,
it seems pragmatic to have a rule of thumb estimate for their
energy, based solely on their imagined shape. The theory of
elasticity provides an excellent framework for such estimates
and has been in the past successfully applied for this purpose
[12, 13, 16, 17]. The aim of this paper is to show how the
energies of the various shapes that can be imagined may be
estimated from simple relationships that are quite accurate
when applied properly. In certain aspects, this paper is a
continuation of efforts started in [16] and [17], but differs from
them in that it studies a certain class of convex carbon shapes
that include both capped carbon nanotubes and fullerenes as
special limiting cases. It also applies the theory of elasticity in
more difficult circumstances in which the symmetry of shapes
is reduced.

In section 2 I shall present the geometric construction
of a certain class of shapes that is of interest to this
paper. In section 3 I shall describe the procedure that is
used to find minimal energy shapes based on the geometric
construction discussed in section 2. The procedure is based on
the implementation of the conjugate gradient technique [21]
in combination with the latest Brenner’s potential for the
description of carbon–carbon bonding [22], which provides
an excellent opportunity to further examine the predictions
of this relatively recently proposed potential, although the
main message of this paper is totally independent on the
form of the potential used. Section 4 contains numerical
results of this paper, together with elements of elasticity theory
that are applied in the analysis of these results. It will be
demonstrated how a simple characterization of the graphene
elasticity together with the knowledge of the energy for
creation of pentagonal disclination enables a reliable estimate
of energies of various convex shapes. Section 5 summarizes
and concludes the paper.

2. Construction of shapes of interest

The shapes of interest to this work can be constructed as
depicted in figure 1. The procedure is to cut out the outlined
shape from the graphene plane and fold it into a polyhedron.
The shapes that shall be considered can be loosely termed
as elongated, regular or contracted icosahedra. Note that the
construction results in 12 pentagonal carbon rings situated
in vertices of (contracted or elongated) icosahedron. The
equilibrated, minimal energy shapes obtained from the pieces
of cut-out graphene plane are also displayed in figure 1. The
numerical procedure that was used to obtain these shapes will
be discussed in detail in section 3. At this point, note that the
elongated shapes resemble carbon nanotubes, while the highly
contracted shapes look almost like two cones glued together
at their bases—there are two pentagonal carbon rings at the
‘poles’ of the shape (upper and lower points in shape depicted
in panel (b) of figure 1), and the remaining ten pentagonal
carbon rings are arranged around an ‘equator’ of the shape,
in the polygon vertices of two parallel large pentagons rotated
with respect to each other by an angle of π/5 (the vertices of
one of those pentagons are denoted by points P1, . . . , P5 in
figure 1). The shapes can be uniquely characterized by the
lengths of two vectors, A1 and B, since |A1| = |A2| (see
figure 1). The lengths are integer multiples of the distance

A

A

B

1

2

(a)

(b)

P1 P2 P3 P4 P5

Figure 1. Geometric construction of the ‘armchair’ shapes of
interest. The shape is cut out from the graphene plane and folded in
an elongated (shape in panel (a)) or contracted (shape in panel (b)) or
regular (not shown) icosahedron. Note that the points P1, . . . , P5

(panel (b)) are situated in polygon vertices of a (large) pentagon once
the shape is folded.

between the centres of neighbouring carbon hexagonal rings,
i.e.

|A1| = |A2| = md,

|B| = nd,

d = a
√

3

(1)

where a is the nearest neighbour C–C distance in graphite. I
shall adopt the convention that negative values of n correspond
to contracted shapes, so that the shapes in figure 1 can be
described by (m = 2, n = 2) (elongated icosahedron) and
(m = 2, n = −2) (contracted icosahedron). The (regular)
icosahedral fullerenes are obtained for n = 0. The condition
that has to be fulfilled by m and n integers is n � −m. For
n � m, the construction results in capped armchair (5m, 5m)

single-wall carbon nanotubes and this is the reason for giving
the attribute ‘armchair’ to the chosen subset of shapes. The
total number of carbon atoms (N ) in the constructed shapes is

N = 60m2 + 20mn. (2)

Similar geometrical construction can be used to generate
‘zigzag’ or chiral (helical) shapes [18]. However, as the main
intention of this work is in application of a continuum elasticity
theory, the precise structure and atomic symmetry of the shape
is of no importance, and only its shape matters in this respect.
It should be noted here that the construction results in single-
shell or single-wall carbon shapes/molecules. All the effects
that are specific to multishell structures, in particular van der
Waals interaction between the different shells, are not treated
in this work. For the application of the continuum elasticity
theory in the presence of van der Waals interactions and/or a
surrounding elastic medium see e.g. [19, 20].

3. Finding the minimum-energy shapes

The mathematically constructed folded polyhedra will not
represent the minimum energy shapes. Carbon atoms in
a minimum-energy structure should be relaxed so that the
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Figure 2. Excess energy per unit area as a function of squared
cylinder (armchair carbon nanotube) curvature for the Tersoff
potential [23] (circles) and the Brenner potential [22] (squares). The
results for (4, 4) and (10, 10) armchair carbon nanotubes in this
graph are denoted.

nearest-neighbour C–C distances and bond angles are close
to their optimum value energywise. To account for these
effects, one should have a reliable description of the energetics
of carbon bonding. In this work, the C–C interactions are
modelled using a relatively recent second-generation reactive
empirical bond order potential by Brenner et al [22]. In this
model, the potential energy (Eb) of a carbon structure is given
by

Eb =
∑

i

∑

j>i

[
V R(ri j ) − bi j V

A(ri j)
]
, (3)

where ri j is the distance between nearest-neighbour atoms
i and j , V R and V A are pair-additive repulsive and
attractive attractions, respectively, and bi j is the bond order
between atoms i and j that approximately accounts for the
anisotropy of C–C bonding and for the many-body character
of C–C interactions by including effectively the three-body
contributions to Eb. The detailed description of the potential,
together with all relevant parameters can be found in [22].
Similar potential models have been successfully employed in
previous research of carbon structures (see e.g. [16, 17]).

The geometrically constructed, folded shape is used as
the initial guess of the structure. The local minimum of Eb

in the configurational space spanned by coordinates of all
carbon atoms is found using the conjugate gradient technique
described in [21]. The conjugate gradient technique optimizes
all the coordinates at once, proceeding through a sequence of
steps along the ‘noninterfering’ or ‘conjugate’ direction in the
configurational space, so that a minimization along a particular
direction does not spoil the effect of minimization in other
conjugate directions. Similar procedures have been used for
the same purposes in [12–14].

4. Energies of shapes and considerations based on
elasticity theory

4.1. Infinitely long carbon cylinders (non-capped carbon
nanotubes)

Conceptually the simplest shape that can be constructed from
the graphene plane is the open-ended (non-capped) carbon
nanotube. It does not result from the construction described
in section 2, but will be examined first to enable a simple
insight into the application of elasticity theory to the shapes of
interest. I shall consider infinitely long single-walled armchair
carbon nanotubes. The energetics of such shapes can be
studied by applying the (one-dimensional) periodic boundary
conditions to the carbon-nanotube unit cell (ring or several
rings of atoms), so that the effective number of independent
coordinates that have to be optimized with respect to total
energy of the nanotube is relatively small. Figure 2 displays the
energy of infinite, armchair-type carbon cylinders as a function
of the squared cylinder curvature given by κ = 1/〈Rcyl〉. The
mean radius of the cylinder, 〈Rcyl〉, was calculated from the
relaxed atomic coordinates as

〈Rcyl〉 =
∑

i

√
x2

i + y2
i

N
, (4)

where N is the total number of atoms in the unit cell, ri =
(xi , yi , zi ) is the position vector of the i th carbon atom and
the cylinder axis coincides with the z-axis. The cylinder
radius calculated from equation (4) is always very close to the
analytical prediction for tube radius, R = a/{2 sin[π/(3m)]}.
For example, for (10, 10) carbon nanotubes, equation (4) and
the numerically calculated values of ri yield a nanotube radius
of 6.802 Å, while the analytical prediction is 6.794 Å. The
agreement becomes slightly worse with a decrease in the
nanotube radius. The energies displayed in figure 2 are in fact
excess energies per unit area of the structure (denoted by Ac;
Ac = 3a2

√
3/4) and were calculated as

�E

Ac
= (Eper atom

cylinder − Eper atom
graphene)

4

3a2
√

3
, (5)

where Eper atom
cylinder and Eper atom

graphene are the energies per atom in
the cylinder and in the graphene plane, respectively. The
calculations were carried out for two versions of the carbon–
carbon potential, which obviously predict different slopes of
the dependence of the excess energy on squared curvature, but
note that both curves are linear up to very large curvatures,
i.e. small radii of carbon nanotubes. Calculations with the early
Tersoff potential [23] predict that somewhat larger energies
are required to bend a piece of graphene plane in a cylinder
with respect to those obtained by using the latest Brenner
potential [22]. For the energy per unit atom in the graphene
plane the two potentials predict Eper atom

graphene = −7.395 52 eV

(Tersoff’s potential) and Eper atom
graphene = −7.394 94 eV (Brenner’s

potential). A more important difference between the two
potentials is in the equilibrium C–C bond lengths they predict
(a = 1.4605 Å and a = 1.4204 Å for the Tersoff and Brenner
potentials, respectively). The slopes of the lines shown in
figure 2 (c0) were obtained from fitting the calculated results
pertaining to (5, 5), (6, 6), . . . , (16, 16) carbon nanotubes, and
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for the Brenner and the Tersoff potential they are 0.863 ±
0.003 eV and 1.093 ± 0.006 eV, respectively (Tersoff obtained
c0 = 1.02 eV in [16]).

The demonstrated linear dependence of the excess energy
per unit area on squared (mean) curvature can be easily
understood from the examination of the geometry of a bent
network of graphene bonds. Consider a piece of graphene
plane bent on a large cylinder of radius R � a. The most
important change in the energetics of the carbon network is
due to a change in angles between the bonds, while the bond
lengths remain the same as in graphene. Only the bond order
term, bi j , depends on the angles between bonds (see equation
(3) and [22, 23]). By purely geometrical considerations it is
easy to derive how the angles between the bonds change when
the graphene plane is rolled onto a cylinder. If one assumes
the plane to be inextensional, and considers large cylinder radii
(a/R � 1), the change in energy per i th atom is given by

�Ei = 1

2
V A(a)

[
∂bi j

∂ cos(θi jk)

]

−1/2

(
3a

4R

)2

, (6)

which can also be written as

�E

Ac
= 1

2
V A(a)

[
∂bi j

∂θi jk

]

2π/3

κ2

2
, (7)

where j is the index of one of the three nearest neighbours of
the i th atom, k �= j is either of the remaining two neighbours
of i and the angle between the i– j and i–k bonds is θi jk .1 The
explicitly written factor of 1/2 is a consequence of the fact that
the energy in the Tersoff–Brenner potentials is situated in C–C
bonds, and that each bond is shared by two atoms. Equation
(7) is most easily derived by considering armchair or zigzag
carbon nanotubes, since in these cases one of the bonds is either
parallel (zigzag) or perpendicular (armchair) to the cylinder
axis, but for a/R � 1, the relation also holds for helical
nanotubes; i.e., for small curvatures the bending energies do
not depend on the symmetry of the carbon nanotube. Note
again that the analytical expression (7) accounts for the excess
energy only in the limit of small curvatures κ , i.e. for radii
of curvature that are large with respect to the graphene lattice
constant.

Equation (7) shows that the excess energy per unit area
is proportional to the squared curvature, in accordance with
the results produced by calculations displayed in figure 2
(note, however, that only a curvature along one direction
is accounted for by equation (7), which is sufficient for a
cylindrical surface). It furthermore predicts that the slope of
this dependence is given by the properties of the interatomic
potential (intriguingly, the factor of proportionality does not
depend on the form of the repulsive part of the potential for
the class of bond order potentials given in [22, 23]). The
slope c0 can be easily read out from equation (7), and is
calculated to be c0 = 0.8301 and 1.0152 eV for Brenner’s
and Tersoff’s potentials respectively. This is fairly close to
the slopes obtained numerically. The small difference can be
attributed to the fact that equation (7) is valid only for small

1 The bond order function bi j includes summation over k, the remaining two
neighbours of i, k �= j (see [22, 23]). When evaluating the derivative in
equation (7), all the indices (i, j, k) are to be considered as fixed, but the
summation over k in bi j of course remains.

curvatures (or large radii, a/R � 1), i.e. it includes only
the lowest order contribution of curvature (quadratic). For
tubes of small radii, higher order terms are expected to be of
importance. In fact, if one restricts the linear fit in figure 2
to smaller curvatures (from (12, 12) to (16, 16) nanotubes,
a/R < 0.175) one finds that the slopes are 0.839 and 1.036 eV,
which is in significantly better agreement with the prediction
of equation (7). Note that for (5, 5) nanotubes, a/R = 0.414,
which means that the tubes of such small radii are already in
the region where condition a/R � 1 does not hold, and the
predictions of equation (7) are not expected to be very accurate.

The key conclusion of this subsection is that the excess
energy per carbon atom (�E ) of an infinitely long carbon
cylinder can be reliably estimated from

�E

Ac
= c0

κ2

2
, (8)

where c0 is the elastic constant of the graphene plane
related to the energetics of its bending (the bending rigidity),
which, for infinitesimal curvatures, can be calculated from
the knowledge of the interatomic interactions in graphene
as in equation (7). This equation holds irrespective of the
details of the interatomic interactions, which only change
the value of c0 and not the functional dependence displayed
in equation (8), which was illustrated by the examination
of energetics predicted by two different models of C–C
interactions [22, 23]. Equation (8) can also be understood
without reference to the atomic structure of the carbon
nanotube by interpreting its left-hand side as the bending
energy per unit area of the material.

4.2. Icosahedral fullerenes

Icosahedral fullerenes are an (m, n = 0) subset of shapes
considered in section 2. They are more complex than the
infinite carbon nanotubes from the standpoint of elasticity
theory since they contain 12 pentagonal disclinations situated
at vertices of an icosahedron. The excess energy of icosahedral
fullerene relative to a piece of infinite graphene sheet with
the same number of atoms is thus a result of both bending
(and possibly stretching) of the sheet and the energy required
to create disclinations. In order to calculate the bending
contribution to the energy, one should have some information
on the geometry of the minimal energy shape of the icosahedral
fullerene. The pentagonal disclination can be constructed in
a graphene plane, starting from the centre of a hexagon, and
cutting the plane in two directions that make an angle of 60◦—
these cuts can be easily seen in the geometrical constructions
in figure 1. The smaller, cut-out piece of graphene is discarded
and the remaining (larger) piece of graphene is then folded
to rejoin the edges of the cut. The shape of minimal energy
that the remaining piece of graphene adopts is a cone, since
it costs less energy to bend the C–C bonds than to stretch
them (it is convenient to imagine a circular piece of graphene
plane with a hexagon in its centre). The shape will in fact be
a truncated cone (or a conical frustum), since the pentagonal
ring at the top of the cone will be flat and parallel to the
larger base of the cone. The precise description of the shape
depends on the values of two-dimensional Young’s modulus
and bending rigidity. For materials like graphene (whose
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stretching requires much more energy than bending), the
conical frustum is an excellent approximation of the minimal-
energy shape. From purely geometrical considerations, the
half-angle of the cone is easily shown to be sin−1(5/6).
Shapes of crystalline, hexagonally coordinated membranes
with pentagonal disclinations have been studied in [14], and
many of the features discussed there also apply to the case of
graphene. The icosahedral fullerene is a bit more complicated
than a single cone since it contains 12 pentagonal carbon rings.
It seems plausible that the fullerene shape should be well
described by the union of 12 truncated cones. The radius of the
larger base of a particular cone is restricted by the presence of
other cones. To illustrate these geometrical considerations, in
figure 3 the shape of the (m = 4, n = 0) icosahedral fullerene
is displayed (left column of images), which is in a minimum
of total energy, obtained numerically as discussed in section 3.
The images in the right column of figure 3 display a union of
12 cones with half-angles of sin−1(5/6) whose larger bases just
touch. Note that this geometrical construction is an excellent
approximation to the calculated minimal energy shape. Its
small drawback is that its total area (without inclusion of the
areas of the larger bases of the cones) is smaller than the total
area of the fullerene shape, which is manifested in figure 3 by
the appearance of ‘holes’. Note also that the regions where
these holes appear are almost flat in the numerically calculated
minimal energy shape of the fullerene, and their contribution
to the bending energy should thus be small.

Having such a good representation of the shape, it is
possible to directly proceed to the calculation of its bending
energy. In the continuum elastic theory of membranes [24],
the bending energy (Hb) is represented as

Hb = 1
2

∫

Surface
dS

(
c0κ

2 + 2cGγ
)
, (9)

where c0 is the bending rigidity discussed in the previous
subsection, cG is the Gaussian rigidity, dS is the infinitesimal
element of the shape surface and κ and γ are the mean and
Gaussian curvature of the surface, respectively (if R1 and R2

are the principal radii of curvature, κ = R−1
1 + R−1

2 , and
γ = (R1 R2)

−1). Note that for a cylindrical surface γ = 0
and κ = 1/Rcyl (R1 = Rcyl, R2 = ∞) at every point of the
surface, and the total bending energy integrates to Hb/A =
c0κ

2/2, where A is the total area of the cylinder (without the
bases). This is in agreement with equation (8). For conical
surfaces, the Gaussian curvatures are also zero everywhere, so
the total bending energy of the approximated fullerene shape
will depend only on c0. Integrating equation (9) over the
surface of a cone whose half-angle is β , one finds that the
bending energy of a cone (H c

b ) is

H c
b = cos2 β

sin β
πc0 ln (rmax/rmin) , (10)

which for the cones with β = sin−1(5/6) yields [16]

H c
b = 11π

30
c0 ln (rmax/rmin) , (11)

where the meaning of rmin and rmax is illustrated in panel (c) of
figure 3—these are the distances of the upper and lower bases
of the conical frustum from the cone apex measured along the

r rmin max

sin  (5/6)-1

(a)

(b)

(c)

Figure 3. (a) Equilibrated, minimal energy (m = 4, n = 0) shape
(left) and its approximation by 12 conical frusta whose smaller base
centres are situated at the vertices of an icosahedron (right). (b) The
same as in panel (a), only viewed from a different point. (c) The
elementary building block of the shapes shown in the right columns
of panels (a) and (b)—a conical frustum whose half-angle is
sin−1(5/6). The quantities relevant to equation (11) are denoted.

cone face. The value of rmin can be easily evaluated due to the
fact that the smaller base of the frustum is a pentagon of carbon
atoms. There is some ambiguity, however, since the pentagon
is to be approximated by a circle. If the circumradius of the
pentagon is identified with the radius of the smaller base of the

cone, one obtains that rmin = 3a
√

50 + 10
√

5/25 ≈ 1.021a,
which is the upper bound for rmin. The identification of the
radius of the smaller base of the cone with the inradius of the
pentagon yields rmin = 3a

√
25 + 10

√
5/25 ≈ 0.826a, which

is the lower bound for rmin. In any case, rmin = f a, where f
is a numerical factor between 0.826 and 1.021. The value of
rmax is half of the shortest distance between the two apices of
the neighbouring cones measured along the cone faces. From
figures 1 and 3, one finds that rmax = 3(m − 2)a/2 + rmin, and
by using equation (2) one obtains that

rmax

rmin
= 3

2 f

√
N

60
+ f − 1

f
. (12)

It is obviously quite convenient to choose f = 1, closer to
the upper bound for rmin, so that the total excess energy of the
icosahedral fullerene can be written as

�E(N) = 12

[
λ5+ 11π

60
c0 ln

(
N

60

)
+ 11π

30
c0 ln

(
3

2

)]
+Eholes.

(13)
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The multiplicative factor of 12 in the above equation is due to
the sum of the energies of 12 cones that make the shape surface,
and λ5 is the core energy of the pentagonal disclination, which
contains the local effects associated with the atomic structure
of the carbon pentagon and its immediate neighbourhood.
The contribution of the part of the fullerene surface that was
not covered by the union of cones to the total energy was
denoted by Eholes. Note that this quantity should represent a
quite small correction to the total energy (see figure 3) and
is not expected to depend strongly on N , since the area of
the ‘holes’ is proportional to N , while their mean curvature
is approximately proportional to 1/

√
N (inverse radius of the

fullerene, see equation (9)). Although one could easily invent
a nice geometrical model to estimate this contribution, it is
possible to proceed further by noting that equation (13) can
also be written as

�E(N) = �E(C60) +
[

11π

5
c0 ln

(
N

60

)]
, (14)

where �E(C60) is the total excess energy of C60 for which
the calculation with the Brenner potential predicts �E(C60) =
26.744 eV. Figure 4 displays the results of numerical
minimization of total energy of icosahedral fullerenes together
with the prediction of equation (14) with c0 = 0.863 eV taken
from the analysis of infinite carbon cylinders. It seems more
sensible to choose this value of c0 rather than the one predicted
by equation (7), which is appropriate for small curvatures,
since close to the smaller bases of the truncated cones condition
a/R � 1, where R is the radius of curvature, is not fulfilled.
Thus, a usage of a somewhat larger value of c0 obtained
from the numerical analysis of an infinite carbon cylinder
should approximately account for the contribution of terms like
(a/R)p , p > 2, to the bending energy of the shapes studied.
Note, however, that the (infinitesimal) analytical value of c0

(0.83 eV) and the one obtained from the study of infinite carbon
cylinders (0.863 eV) are quite similar, and one could also chose
to work with the analytical value of c0 with comparable success
(see below).

It can be seen in figure 4 that the agreement between
the calculated values and those predicted by equation (14) is
excellent (note that there are no fit parameters). Very small
deviations can be mostly attributed to the fact that the regions
around the larger bases of the cone are constrained by the
continuity of the fullerene surface, and deviation from the cone
shape is thus expected. It is to a certain extent surprising
that the predictions of equation (14) are so precise, especially
concerning the fact that the excess energy of C60 figures in it as
a parameter. Buckminsterfullerene is certainly not expected to
be reliably described by the elasticity theory, since there are no
atoms on the cone faces, only C–C bonds. Yet, the elasticity
theory results maintain their meaning down to fullerenes of
very small sizes and small number of atoms. By examining
the energies of individual atoms in the icosahedral fullerenes it
is possible to proceed a bit further and to estimate the value of
the core energy, λ5. For example, in (m = 4, n = 0) fullerene
shown in figure 3, the energies of atoms in pentagonal rings
are −6.959 eV, while atoms situated in hexagonal carbon rings
have energies of about −7.38 eV, depending on their position
(see equation (3)). The energies of atoms in pentagonal
rings do not change significantly with increasing the size of
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Figure 4. Numerically calculated excess energies of icosahedral
fullerenes (squares) and the prediction of equation (14) (line).

the fullerene, which is a consequence of the local nature
of this energy. All this suggests that λ5 = 5[−6.9587 −
(−7.3949)] eV = 2.18 eV, where −7.3949 eV is the energy per
atom in the infinite graphene plane, predicted by the Brenner
potential. Equation (14) does not depend (formally) on this
quantity, but it can be calculated from equation (13), which
yields λelast

5 = 1.83 eV (Eholes was set to zero), in a quite nice
agreement with the number obtained from the detailed atomic
description of the icosahedral fullerenes, especially in view of
all the details involved in the approximation of the fullerene
shape. This also confirms that Eholes is indeed a negligible part
of the total energy.

4.3. Capped carbon nanotubes, elongated icosahedral
fullerenes

Using the same reasoning as outlined in the previous
subsection, it is easy to construct an approximate shape of
the elongated icosahedral fullerene (n �= 0). It can be
approximated by the union of 12 conical frusta and a cylinder
whose length is na

√
3, and radius 15ma/(2π) (a finite-length

piece of armchair (5m, 5m) carbon nanotube). The excess
elastic energy can be thus written as

�E(m, n) = 12

[
λ5 + 11πc0

30
ln

(
3m

2

)]
+2π2c0

5
√

3

n

m
+Eholes,

(15)
which could also be parameterized by the total number of
atoms, N , and n. The first term in the expression for energy
in equation (15) is the sum of the local and bending energies
associated with the 12 equal pentagonal disclinations (conical
frusta), and the second one corresponds to the bending energy
of the finite length cylinder. The third term is again the energy
associated with the ‘holes’ in the geometrical construction,
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Figure 5. (a) Numerically calculated equilibrium shape of
(m = 2, n = 4) elongated icosahedral fullerene. (b) Approximation
of shape using geometrical construction leading to equation (15).

as discussed in the previous subsection. Note that for n =
0 equation (15) reduces to equation (13). Although the
geometrical construction yielding equation (15) is quite simple,
it has a small drawback in that the areas of the cones and
of the cylinder in between them overlap to a small extent.
Angles between the surfaces of the cones and the cylinder
at the points in which the entities nearly touch are small
but nonvanishing, which is another drawback of the proposed
construction. More elaborate constructions are possible, but
are not needed (figure 6). Equation (15) can be approximated
by

�E(m, n) = �E(C60) +
[

22π

5
c0 ln (m) + 2π2c0

5
√

3

n

m

]
,

(16)
which simply states that the excess energy of the shape is equal
to the sum of the excess energy of the icosahedral fullerene
and the bending energy of the cylinder inserted in between
its two ‘halves’ (see figure 5). This equation is, however, an
approximation, since it is based on the assumption that the
excess energies associated with the holes in the geometrical
constructions are the same for the icosahedral fullerene and
the elongated icosahedral fullerene, which is not exactly the
case (compare figures 5 and 3). It furthermore contains an
assumption that the elastic energies of holes do not depend on
m and n integers characterizing the structure. Nevertheless, an
excellent account of the numerical data is obtained, which can
be seen from figure 6. Note again that the analytical results
presented in figure 6 represent the predictions of the elasticity
theory without fit parameters.

4.4. Contracted icosahedral fullerenes

The contracted icosahedral fullerenes are more complicated
than the shapes considered thus far. Construction of their
geometrical approximation is not simple mostly due to specific
geometrical constraints that the ten pentagonal disclinations
situated around the equator of the shape are subjected to. When
n vanishes, the area around each of the disclinations is well
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Figure 6. (a) Excess energies of elongated icosahedral fullerenes
(capped carbon nanotubes) as a function of elongation number (n)
with m as a parameter of the curves. Full symbols correspond to
numerically calculated excess energies, while lines correspond to the
predictions of elasticity theory in equation (16). (b) The same data as
in panel (a) with the roles of m and n numbers interchanged.

represented by a cone with an angle of 2 sin−1(5/6), which
was clearly demonstrated in section 4.2. When n decreases
(i.e. increases in absolute value), the two large pentagons
parallel to the shape equator whose vertices coincide with five
pentagonal disclinations (see figure 1) approach each other.
This constrains the shape of the area around these pentagonal
disclinations. As the cone was such a useful approximation
of the area around pentagonal disclinations for shapes studied
in sections 4.2 and 4.3, it seems reasonable to try to describe
the contracted icosahedral fullerenes also as union of cones,
ten (those arranged around the equator of the shape) of which
belong to one category, and two (the ones at the two poles of
the shape) to another. The two cones at the poles are easily
constructed as in sections 4.2 and 4.3—these have the angles
of 2 sin−1(5/6). The area around ten remaining disclinations
is dominated by two opposing geometrical constraints. As
n decreases, the angle subtended by a line that connects a
particular disclination (point A in panel (b) of figure 7) and
the one at the closest pole (point B) and a line that connects
the disclination with the midpoint of a line drawn between the
two nearest disclinations in the neighbouring pentagonal ring
of disclinations (point C) also decreases—this angle is denoted
by α1 in panel (b) of figure 7. On the other hand, the angles
that are subtended by the lines DA and AE or FA and AG (see
figure 7) increase when n decreases. It is thus clear that the
area around the disclination cannot be represented by a single
cone. Nevertheless, it seems reasonable to approximate this
area by a union of pieces of surfaces of two cones, each of them
satisfying one of the two opposing geometrical constraints.
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The angle of one of the cones is about α1, which is given by

α1(n) = cos−1

[
1

2 sin(π/5)

]
+ cos−1

[√
3m tan(π/10)

3m − 2n

]
.

(17)
The angle of the second cone (α2) that is searched for is larger
than α1, and the contribution of this half-cone to the total
elastic energy of the area surrounding the disclination is thus
smaller (see equation (10)). Nevertheless, the second cone is
important since it contains a part of the total area surrounding
the disclination, thus reducing the area available to the cone
with angle α1. When n = 0, both α1 and α2 angles should
be 2 sin−1(5/6). Note that when n decreases angle α2 changes
in a significantly smaller range than α1, since it is importantly
constrained by the fixed angle between lines DA and AH (see
figure 7). Thus, I shall neglect the change of α2 with n and set
it to a constant

α2 = 4 sin−1(5/6) − α1(n = 0)

= 4 sin−1(5/6) − cos−1

[
1

sin(π/5)

]
− cos−1

[
tan(π/10)

]

≈ 2.04 sin−1(5/6), (18)

which is obviously quite close to 2 sin−1(5/6), as it should be,
and which was chosen so that α2 + α1(n = 0) = 4 sin−1(5/6),
since I am further going to assume that each of the two
cones takes exactly a half of the total area available to the
disclination. Together with the choice for α2 in equation (18),
this assumption will yield the elastic disclination energy in the
limit when n = 0 equal to that characteristic of icosahedral
fullerenes studied in section 4.2. Note that the axes of the
two cones do not need to be identical—the two pieces of the
conical surfaces can be rotated with respect to each other at
will. It is also irrelevant how the particular cone (half) surface
is constructed as long as the pieces of it are bounded by the
arcs of the two bases subtending the same angle from the cone
axis and the two lines (along the cone face) that connect the arc
ends in the upper and lower base. Thus, there is a significant
freedom in constructing a shape around the disclination, but
for all of the thus constructed shapes the buckling energies are
equal. Note also that for n �= 0 points D, B, H and E do not
lie in a plane. The proposed construction is admittedly rather
approximate. For example, one could object that the fractions
of the total area belonging to each of the two cones should also
(at least slightly) change with n. Nevertheless, the construction
accounts for most important geometrical constraints imposed
on the area around pentagonal disclinations situated around
the equator of the shape due to the presence of neighbouring
disclinations. The exact answers to all of the objections
regarding the proposed construction that could be easily put
forth would require a solution of the nonlinear problem in the
theory of elasticity, which is not the aim of this study—the aim
is to obtain a simple insight into the energetics of the shapes
using the simplest possible application of the elasticity theory,
and to obtain, preferably analytic, expressions for the excess
energies of such shapes.

Following the reasoning presented in the previous
paragraph and using equation (10) for the calculation of
bending energy of a cone with arbitrary half-angle, the total
excess energy of the proposed geometrical approximation to
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Figure 7. (a) Equilibrium shape of (m = 3, n = −2) contracted
icosahedral fullerene. The characteristic pyramid-like shape is
denoted by full lines. (b) The pyramid-like shape with denotations
discussed in the text.

the contracted icosahedral shapes is

�E(m, n) = 12λ5 +2Epole(m, n)+10Eequator(m, n)+ Eholes,

(19)
where

Epole = 11c0π

30
ln(3m − q), (20)

Eequator = c0π

2
ln(q)

{
cos2[α1(n)/2]
sin[α1(n)/2] + cos2(α2/2)

sin(α2/2)

}
, (21)

and

q =
√

9m2 + 3(3m − 2n)2

4
. (22)

The last parameter (q) is simply a half of the distance (in
units of a) between the two nearest neighbouring disclinations
situated at different pentagonal rings of disclinations around
the equator of the shape (points A and E in figure 7).

Numerically calculated excess energies of the shapes and
the predictions of equation (19) are shown in figure 8 and
denoted by symbols and lines, respectively. In evaluating
equation (19), Eholes was set to zero, λ5 = 1.83 eV was taken
from the analysis of icosahedral fullerenes in section 4.2 and
c0 = 0.863 eV, as in the two previous subsections. Note again
that there are no fitting parameters involved. The agreement
of the predictions of the elasticity theory with the numerical
results is striking. In spite of all the approximations involved
in the geometrical construction of the equilibrium shape,
equation (19) both qualitatively and quantitatively accounts for
the numerical data. The largest disagreement is found for the
smallest shapes (m = 2), but the curves correctly account
for the appearance of a minimum in excess energies for some
finite n (panel (a) of figure 8), and for the increase in excess
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Figure 8. (a) Excess energies of contracted icosahedral fullerenes as
a function of n with m as a parameter of the curves. Full symbols
correspond to numerically calculated excess energies, while lines
correspond to the predictions of equation (19). (b) The same data as
in panel (a) with the roles of m and n numbers interchanged.

energies when |n| becomes comparable to m. It is worth noting
that although the number of atoms in n = −m structures
is smaller than in (m, n = 0) structures (regular icosahedral
fullerenes) by 20 mn (see equation (2)), the total excess
energies are still significantly larger in such structures, which
is a consequence of an energetically unfavourable geometrical
position occupied by the ten disclinations around the equator
of the shape. This consideration can also explain the minimum
in excess energies obtained for some n when m is fixed—as
the elongation number n decreases, the number of atoms in
the structure decreases, but the contribution to excess energy
due to the ten disclinations around the equator increases.
The combined consequences of these two effects lead to the
appearance of a minimum in excess energy as a function of n.
Of the three types of shapes studied, the contracted icosahedral
fullerenes typically have the largest excess energies per atom.
For example, the excess energy of (m = 10, n = −10)
contracted fullerene (�E = 59.47 eV) that contains 4000
atoms is significantly larger than the excess energy of (m = 9,
n = 0) regular icosahedral fullerene (�E = 53.16 eV) that
contains a larger number of atoms (N = 4860).

5. Summary and conclusion

It has been shown that insight into the geometry of the
equilibrium shapes can be extremely useful in estimating their
(excess) energies. Such an approach does not require detailed
description of the interatomic interactions characteristic of a
shape or molecule in question; instead, it relies exclusively on
the knowledge of elastic parameters of the material that the
shape (shell) is made of. In the studies presented in this paper,

the parameters that were necessary for reliable estimation of
energy were the local energy of a pentagonal ring of carbon
atoms (λ5), and the bending rigidity of a graphene plane (c0).
Both of these parameters derive from the quantum mechanical
nature of bonding of atoms (see equation (7)) that make the
shape. Surprisingly enough, it has been demonstrated that the
application of the simplest theory of elasticity yields reliable
results even for shapes made of a small number of atoms, i.e. in
the regime where its applicability is not to be expected. For all
of the shapes considered, knowledge of the two-dimensional
Young’s modulus of graphene [24] was not needed, which
suggests that in such shapes almost all of the elastic energy
is of the bending type, while the energies associated with
stretching are negligible2. For shapes in which the geometrical
constraints on the shape are strong (as in the case of contracted
icosahedral fullerenes), the application of elasticity theory may
be involved and complicated. Nevertheless, the identification
of the constraints and their effects on the allowed shapes yields
an additional insight into the energetics of the shapes and its
behaviour within a certain class of shapes studied.
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