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We present a detailed study of the bound-state phonon-mediated resonances in atom-surface scattering that
extends our earlier work �Šiber and Gumhalter, Phys. Rev. B 71, 081401 �2005��. Previous results obtained
within the restricted Fock space coupled-channel algorithm are reconsidered in view of the enlargement and
refinement of the basis of quantum states used in the calculation. The convergence demonstrated in this
procedure reinforces the usefulness of the developed algorithm.
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We recently demonstrated the application of the coupled-
channel method to the problem of scattering of inert gas
atoms from surface phonons.1 The application represents an
extension of our earlier work reported in Refs. 2 and 3 and
allows for a consistent treatment of lateral momentum trans-
fer in multiphonon-assisted bound-state resonant atom-
surface scattering. The proposed algorithm, which we termed
the restricted Fock-space coupled channel �RFCC� method,
enabled us to investigate the effects of bound-state reso-
nances on the scattering of thermal energy He atoms from
nondispersive surface phonons, and in particular to assess
whether in the full three-dimensional �3D� treatment the
strengths of inelastic scattering resonances should appear
weaker than in the earlier proposed one-dimensional �1D�
treatments of the same problem.5,6 Application of the devel-
oped algorithm to the benchmark model describing low-
energy He atom scattering from vertically polarized Einstein
phonons �of frequency ��Q�2.7 meV� in Xe monolayers on
the Cu�111� surface4 showed that this indeed was the case
�cf. Fig. 2 of Ref. 1�.

The results of application of the developed algorithm con-
vey two important messages concerning the theoretical stud-
ies of inelastic resonant scattering.

�i� Efficient numerical treatment of inelastic bound-state
resonance effects in a multidimensional phonon phase space
is feasible within a framework that includes the features of
earlier multiphonon theories7 �as demonstrated by compari-
son of the exponentiated Born approximation �EBA� with the
RFCC results in Figs. 1 and 2 of Ref. 1�.

�ii� The relative intensities of inelastic bound-state reso-
nances are suppressed �albeit not completely eliminated� in
going from 1D to 3D �cf. Fig. 2 of Ref. 1�. As we under-
stand, the author of the proceeding Comment agrees with us
on both points �i� and �ii�. Specifically, according to our 3D
calculations applied to the He→Xe/Cu�111� collision sys-
tem, the phonon-assisted bound-state resonance effects can
induce �4% change in the relative elastic scattering inten-
sity described by the so-called Debye-Waller factor P0,
whereas in 1D this effect is around 40%. This indicates that
under these circumstances the inelastic bound-state reso-
nance effects would be difficult to observe in the He
→Xe/Cu�111� scattering experiments.

In a Comment8 on our work Brenig argues that the bound-
state phonon-mediated resonances we discerned in the calcu-

lated 3D total elastic scattering probability P0�Ei� as a func-
tion of the incident He atom energy Ei are at least a factor of
2 smaller than the ones he could obtain in a somewhat dif-
ferent 3D treatment. In his opinion there are some shortcom-
ings in our approach for which he suggests improvements in
the domain of obtaining better numerical accuracy. Applica-
tion of a modified CC treatment to the same collision system
led him to the conclusion that under favorable circumstances
it might be possible to observe the discussed resonance ef-
fects experimentally. In the following we shall demonstrate
that a reconsideration of the same problem in which our
method is implemented with increased numerical accuracy
leads to the same conclusions as reached in Ref. 1.

The shortcomings that Brenig associates with our method
can be explained simply by the insufficient density of points
in the set of incident projectile energies that were sampled in
Ref. 1, as Brenig also acknowledges.8 Since the calculated
resonances are rather narrow �about 0.03 meV; see Fig. 1
below and Fig. 1 of Brenig’s comment�, a sufficiently dense
set of projectile incident energies needs to be considered to
provide proper resonance sampling. To show this we have
repeated the numerical calculations of P0�Ei� with an in-
creased number of calculated points per incident energy in-
terval. Thus, the spacing of the energy mesh in the present
calculation is 0.01 meV, i.e., about the same as in the calcu-
lation of Brenig8 and over the same incident energy interval.
The results of these calculations are presented in Fig. 1 �note
in passing that in Ref. 1 the Debye-Waller factor was inves-
tigated over much larger energy intervals�.

It is apparent that the resonance peaks appearing in the
Debye-Waller factor P0�Ei� recalculated by using a denser
energy mesh reach the same heights �on the average� as those
in Fig. 1 of the Comment.8 A closer inspection of Fig. 1�b�
reveals that the total number and positions of resonances
obtained in the present calculation are the same as in the
earlier one,1 only the relative heights of resonance peaks
over the non-resonant structure are, on the average, a factor
of �2 larger �i.e., in total �2% larger� due to a finer sam-
pling of the incident energy parameter space �Brenig’s quo-
tation of a disagreement of a factor of 4 is exaggerated�. On
the other hand, one should not be surprised that the exact
positions of resonances as well as their number are not the
same in the present calculations and in those performed by
Brenig.8 These characteristics strongly depend on the choice
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of mesh in the phonon lateral momentum �Q� space and
hence they should not be assigned other content because dif-
ferent discrete Q meshes reveal different resonant signatures.
This is also illustrated in Fig. 1 where one can see how the
resonant signatures change with the sampling of the Q space.
Of course, in the limit of a very dense Q mesh the individual
resonances would merge into a continuum of resonances and
the details of the Q-space sampling should become irrel-
evant. Therefore, the comparison of Brenig’s 7�5=35 and
our 6�6=36 Q-point calculations that would go into mesh-
induced details of the computed spectra is neither meaning-
ful nor useful and may even be misleading, as we shall now
explain on the basis of our recalculated results.

In the results presented in the Comment8 Brenig obtained
a larger number of resonances since his choice of mesh,
which is asymmetric �7�5 instead of 6�6 considered in
Ref. 1� yields a larger number of different absolute values
�Q�=Q of the phonon wave vector Q. Thus, Brenig’s asym-
metric set of Q values is less “degenerate” with respect to Q
than our symmetric set, and as the quantity Q enters the
momentum and energy conservation laws that determine
resonance positions for normal projectile incidence, Brenig
obtains a correspondingly larger number of resonances.
However, this is achieved in a rather artificial fashion since

Brenig’s choice of the Q mesh introduces an unphysical
asymmetry in the treatment of phonon wave vectors over the
central part of the surface phonon Brillouin zone �seven
spacings in, say, the x direction and five spacings in the y
direction�. Moreover, some of the resonances Brenig obtains
are also related to inclusion of the states with two phonons
having the same lateral momentum in the basis set of states
employed in the calculation, which we excluded.1 The argu-
ment invoked by Brenig to support this particular choice of
the mesh was “to take into account the Q=0 momenta” that
yield maximum excitation probability. However, this is also
properly taken into account by our calculation, and without
introduction of any artificial asymmetry in the surface Bril-
louin zone, as can be easily seen from Fig. 1 in the following
way. Since Q=0 excitations not only contribute to the reso-
nant scattering, but also to nonresonant inelastic scattering
from phonons, any poor sampling of the Q space around the
Q=0 point would be visible in the total inelastic scattering
probability in the nonresonant region of incident energies,
i.e., it would be smaller and consequently P0 would be larger
than in the calculation that properly accounts for the Q=0
excitations. For example, for Ei=3.55 meV �a nonresonant
region� we obtain P0=0.970 05 �6�6 calculation� which is
practically the same as Brenig obtained in his Fig. 1. The
convergence of the nonresonant elastic scattering probability
P0 can also be seen from our Fig. 1 where one can note that
already the 4�4 calculation nicely accounts for the value of
the Debye-Waller factor in the nonresonant region �P0
=0.972 08 for Ei=3.55 meV�, while 6�6 �P0=0.970 05�
and 8�8 calculations �P0=0.969 94� for the same Ei obvi-
ously exhibit excellent convergence. The convergence of
Brenig’s calculation with respect to the enlargement of the
channel basis that he advocates cannot be estimated from the
results presented in the Comment as these were obtained for
a fixed Q mesh.

The calculated resonant structures in all three panels of
Fig. 1 are very narrow. Hence, any broadening mechanism
that may smear out their intensity would make the peaks less
pronounced. This is illustrated in Fig. 1�c� in which we also
show a convolution of the Debye-Waller factor P0�Ei� with a
Gaussian of half-width �=0.04 meV intended to conform
with the procedure that was also invoked in the Comment. In
a convolution the resonance effects show up as a �1% varia-
tion of P0 in the resonant regions �humps centered around 4
and 5.5 meV�. Here it should be noted that we have applied
the convolution procedure to P0�Ei� which is a measurable
quantity �obtained as the relative intensity of the elastically
scattered beam9�. This is in contrast to the Comment where
the convolution procedure was applied to the angular inte-
grated inelastic scattering intensity 1− P0�Ei� which is not
directly accessible in current experiments. That is, its mea-
surement would require energy-resolved detection of all the
particles inelastically scattered in the half-space above the
surface, which is not feasible. Instead, it may be attempted to
detect the above discussed resonance effects either as a dis-
cernible variation �increase� of the relative intensity of the
elastically scattered beam in the region around Ei
�5.5 meV �which is at the borderline for production of
monochromatic incident beams of He monomers12�, or rather
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FIG. 1. �Color online� Debye-Waller factor �P0� for model He
→Xe/Cu system as a function of the energy Ei of a He atom at
normal incidence to a cold surface. �a�, �b�, and �c� display the
results of the calculations with 4�4, 6�6, and 8�8 meshes in Q
space, respectively. Calculated points are denoted by open circles,
thin full lines are guides to the eye. The thick full line in �c� denotes
a convolution of P0�Ei� with a Gaussian of half-width �
=0.04 meV which accounts for the effects brought about by the
broadening mechanisms.
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in the energy- and angular-resolved �Q-resolved� measure-
ments, where they may appear as sharper features in the
same energy interval under the condition of high angular
resolution.

Concerning a certain doubt that Brenig has cast8 on the
extensively used log-derivative method employed in our cal-
culations, we merely want to point out that the same method
has been previously implemented in very different contexts
including studies of atom diffraction from and adsorption on
corrugated surfaces,3 rotationally inelastic scattering of mol-
ecules from surfaces,10 and adsorption of He atoms in carbon
nanotube materials.11 Never have any problems been en-
countered in these implementations and we are confident that
there are none in the present case either.

Last, although this is not directly related to the results of
our work,1 we may agree with Brenig’s suggestion that the
systems characterized by the parameters he uses to model the
Ne→Xe/Cu collisions may be better candidates for discern-
ing the bound-state phonon resonances than the discussed
case of He→Xe/Cu. However, from the computational point
of view the large inelasticity in such collisions would most
probably require an extension of the Fock space1 beyond the
two-phonon excitations and a corresponding check of con-
vergence of calculations with the thus extended Fock space,
as was done in Fig. 1 of Ref. 1. On the other hand, from the
experimental point of view the observability of the resonance
effects may in this case be hindered by the clustering of

atomic Ne in such low-incident-energy beams.
In conclusion, we have demonstrated by simply doubling

the phonon wave vector mesh density and energy resolution
in our calculations that the algorithm developed in Ref. 1
does not suffer from the shortcomings pointed out in the
preceding Comment.8 The only difference occurring in com-
parisons of calculations presented in Refs. 1 and 8 arises
from the procedure by which the set of projectile incident
energies and values of exchanged phonon wave vectors are
sampled in the numerical evaluation of the scattering prob-
abilities. However, this does not in any way invalidate the
main conclusion of Ref. 1 that the phonon-assisted bound-
state resonances become much less pronounced in the full
three-dimensional �3D� treatment of atom-surface scattering
than in the 1D one, giving rise to only a few percent effect in
the Debye-Waller factor for scattering of thermal energy He
atoms from monolayers of Xe atoms adsorbed on Cu�111�
surfaces.
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